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1. Introduction

These notes originated from reading seminars held in autumn 2019—with Vaibhav Jena,
Alex McGill, and Dongbing Zha—on the classical Carleman estimates from the microlocal
viewpoint. Its contents are primarily based on parts of the textbook Carleman Inequalities:
An Introduction and More [3], written by Nicolas Lerner. The form of the Carleman estimates
(and the associated local unique continuation result) presented here is mainly attributed to
Hörmander [2, Chapter 28], and applies to a general class of differential operators.

Though we intend for the notes to be self-contained, we also aim to organize the material
such that it minimizes the required background in microlocal analysis and pseudodifferential
operators. While some engagement with microlocal analysis is unavoidable, here we restrict
our coverage to only the parts that are necessary for our Carleman estimates—most notably
the sharp Gårding inequality. In order to better streamline discussions, the proofs of essential
results from microlocal analysis are given later in the Appendix.

Technical note: The Carleman estimates in these notes apply to operators with real principal
symbols, and the proofs make use of the sharp Gårding inequality. Another variant of these
estimates uses the Fefferman-Phong inequality instead and is also applicable to operators
with complex principal symbols, under an additional assumption of principal normality. As a
result, the choice of material presented here involves some tradeoffs; while the present version
is extendedible to coefficients with less regularity and to systems of PDEs, the alternative
version applies to a wider class of (only scalar-valued) operators.

Version note: The latest version of these notes is now designed to apply the sharp Gård-
ing (rather than Fefferman-Phong) inequality, as this path involves less technical machinery
and covers more situations of practical interest. Furthermore, corrections were made to the
statement of the sharp Gårding (formerly Fefferman-Phong) inequality, and an appendix was
added to address its proof. This required some non-trivial reorganization of the material—in
particular, the main discussions now encompass general λ-parametrized symbols and pseu-
dodifferential operators, as opposed merely to polynomials and differential operators.
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2. Unique Continuation and Carleman Estimates

In this section, we discuss the local unique continuation problem for linear partial differ-
ential equations. We also formulate (local) Carleman estimates in an abstract manner, and
we discuss their role as a key tool for solving unique continuation problems.

2.1. The Main Setting. The initial task is to describe the setting within which we will
discuss the unique continuation problem. This is expressed via the following definitions and
assumptions, which we will adopt throughout these notes.

Definition 2.1. In accordance with standard conventions:
• We use ∇ to denote the usual (Euclidean) gradient on Rn.
• We also define the operator D := −i∇.

In addition, for any multi-index I = (I1 . . . IN) and ξ ∈ Rn, we set

(2.1) ∇I := ∂I1 . . . ∂IN , DI := (−i)N∂I1 . . . ∂IN , ξI := ξI1 · · · ξIN .

Assumption 2.2. Let Ω be an open subset of Rn, and fix a hypersurface Σ ⊆ Ω given as

(2.2) Σ := {x ∈ Ω | ρ(x) = 0},

for some ρ ∈ C∞(Ω;R) such that

(2.3) ∇ρ(x) 6= 0, x ∈ Σ.

In addition, we fix a point x0 ∈ Σ.

Remark 2.3. In particular, all of our developments will be purely local in nature, thus our
requirement in (2.2) that Σ is a level set does not result in any loss of generality.

Remark 2.4. Notice that ρ implictly defines an orientation of Σ, since ∇ρ is normal to Σ.
In particular, we can think of ρ as selecting the side of Σ corresponding to ρ > 0.

Assumption 2.5. Let P be a linear partial differential operator of order m on Ω,

(2.4) Pφ :=
∑
|I|≤m

pI DI ,

with pI ∈ C∞(Ω;C) for each multi-index I. Moreover, let P0 denote the principal part of P:

(2.5) P0 :=
∑
|I|=m

pI DI .

Remark 2.6. One could weaken Assumption 2.5 so that the coefficients pI have less regu-
larity. However, we avoid doing this here in order to simplify the exposition.

We now recall the principal symbol of P , which carries most of the essential information
about P that we will require in the upcoming analysis:

Assumption 2.7. The principal symbol of P is the function

(2.6) p ∈ C∞(Ω× Rn;C), p(x, ξ) :=
∑
|I|=m

pI(x) ξI .
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Remark 2.8. By default, we will treat p as a homogeneous polynomial of n real variables ξ.
However, in many situations, we will find it useful to implicitly extend p as a polynomial of
complex variables, that is, as a function p : Ω× Cn → C.

We conclude by recalling some special types of differential operators:

Definition 2.9. P is elliptic at x0 iff p(x0, ξ) 6= 0 for any ξ ∈ Rn \ {0}.

Definition 2.10. Σ is non-characteristic at x0 with respect to P iff

(2.7) p(x0, dρ(x0)) 6= 0.

Definition 2.11. Σ is strictly hyperbolic at x0 with respect to P iff:
• Σ is non-characteristic at x0 with respect to P.
• If ξ ∈ Rn and ξ ∧ dρ(x0) 6= 0, then the polynomial

(2.8) fq,x0,ξ : C → C, fq,x0,ξ(σ) := p(x0, ξ + σ dρ(x0))

has only simple (i.e., distinct) and real roots.

2.2. Carleman Estimates. The main tool, and the main topic of these notes, is a class of
weighted integral inequalities known as Carleman estimates, which we describe below.

First, we formulate the class of weight functions that can be used for our estimates:

Definition 2.12. φ ∈ C∞(Ω;R) is a Carleman weight for ρ at x0 iff for any neighborhood
U ⊂⊂ Ω of x0, there exist a neighborhood V ⊆ U of x0 and δ > 0 such that:

• φ(x) > φ(x0) on the region {x ∈ V | ρ(x) > 0}.
• The following property holds:

(2.9) {x ∈ V̄ | ρ(x) ≥ 0, φ(x)− φ(x0) ≤ δ} ⊆ V .

Remark 2.13. Roughly, Definition 2.12 states that the level sets φ − φ(x0) = ε, for small
ε > 0, must both extend into ρ > 0 near x0 and exit ρ > 0 through Σ near x0.

Remark 2.14. Note that by replacing φ with φ−φ(x0) in Definition 2.12, we can additionally
assuming, without any loss of generality, that φ(x0) = 0.

While Definition 2.12 is all that is required for our Carleman estimates, we will work with
a specific family of Carleman weights for our upcoming main result:

Proposition 2.15. For any µ > 0, the function φµ ∈ C∞(Ω;R), given by

φµ(x) := ∇ρ(x0) · (x− x0) +
1
2
(x− x0) · ∇2ρ(x0) · (x− x0)(2.10)

− µ[∇ρ(x0) · (x− x0)]
2 + 1

2µ
|x− x0|2,

is a Carleman weight for ρ at x0.

Proof. First, note that (2.10) immediately yields φµ(x0) = 0. Given U as in Definition 2.12,
we let V := B(x0, ε) be an open ball about x0, with radius ε > 0 small enough so that

(2.11) V ⊆ U , V̄ ⊆ {x ∈ Ω | ρ(x) < µ−1}.
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By Taylor’s theorem, φµ can be written as

φµ(x) = ρ(x)− µ[ρ(x)]2 + 1
2µ
|x− x0|2 + E(x),

where the error term E(x) satisfies

|E(x)| . |x− x0|3, x ∈ U .

Then, by further shrinking ε if needed (depending on ρ and µ), we see that

(2.12) φµ(x) ≥ ρ(x) [1− µ ρ(x)] + 1
4µ
|x− x0|2, x ∈ V .

In particular, (2.11) and (2.12) imply that φµ(x) > 0 for any x ∈ V with ρ(x) > 0.
Next, fix a constant 0 < δ < (4µ)−1ε2. In order to show (2.9), with our chosen V and δ, it

suffices to prove that if x ∈ ∂V and φµ(x) ≤ δ, then ρ(x) < 0. To establish this, we observe
that if x ∈ ∂V and φµ(x) ≤ δ, then (2.12) yields the inequalities

ρ(x) [1− µ ρ(x)] + 1
4µ
ε2 ≤ φµ(x) ≤ δ, ρ(x) [1− µ ρ(x)] < 0.

Now, since 1− µ ρ(x) > 0 by (2.11), it follows that ρ(x) < 0, as desired. �

We now state, as a hypothetical property, the general form of our Carleman estimate:

Definition 2.16. We say that (P ,Σ, ρ) admits a Carleman estimate at x0 iff there exists a
neighborhood U ⊂⊂ Ω of x0, a Carleman weight φ ∈ C∞(Ω;R) for ρ at x0, and constants
C, λ0 > 0 such that for any w ∈ C∞

0 (U ;C) and λ ≥ λ0,

(2.13) λ−
1
2‖e−λφP0w‖L2(U) ≥ C

m−1∑
j=0

λm−1−j‖e−λφ∇jw‖L2(U).

The Carleman estimate property has an equivalent formulation, in which the exponential
weight is removed at the cost of replacing P0 with a conjugated operator. In the remainder
of this subsection, we describe this more convenient alternate formulation.

Definition 2.17. Given any λ > 0, s ∈ R, and open U ⊆ Rn, we define the norm

(2.14) ‖v‖Hs
λ(U) := ‖(λ−∆)

s
2v‖L2(Rn), v ∈ C∞

0 (U ;C).

Remark 2.18. Note that powers of λ−∆ in (2.14) are well-defined, since v can be smoothly
zero-extended to Rn. Also, by repeated integrations by parts, we have that

(2.15) ‖v‖Hk
λ(U) '

k∑
j=0

λk−j‖∇jv‖L2(U), v ∈ C∞
0 (U ;C)

for any k ∈ N, where the constants depend only on k.

Proposition 2.19. (P ,Σ, ρ) admits a Carleman estimate at x0 if and only if there exists a
neighborhood U ⊂⊂ Ω of x0, a Carleman weight φ ∈ C∞(Ω;R) for ρ at x0, and constants
C, λ0 > 0 such that for any v ∈ C∞

0 (U ;C) and λ ≥ λ0,

(2.16) ‖e−λφP0(e
λφv)‖L2(U) ≥ Cλ

1
2‖v‖Hm−1

λ (U).
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Proof. Suppose first that (2.16) holds. Fix w ∈ C∞
0 (U ;C), and let

v := e−λφw.

Then, since Ū is compact, we obtain
m−1∑
j=0

λm−1−j‖e−λφ∇jw‖L2(U) =
m−1∑
j=0

λm−1−j‖(e−λφ∇eλφ)jv‖L2(U)

. ‖v‖Hm−1
λ (U).

Applying (2.16), we then conclude, for λ ≥ λ0, that (2.13) holds:
m−1∑
j=0

λm−1−j‖e−λφ∇jw‖L2(U) . λ−
1
2‖e−λφP0(e

λφv)‖L2(U)

= λ−
1
2‖e−λφP0w‖L2(U).

Conversely, suppose that (2.13) holds. We now fix v ∈ C∞
0 (U ;C), and we let

w := eλφv.

Then, recalling (2.15), we see that

λ
1
2‖v‖Hm−1

λ (U) = λ
1
2

m−1∑
j=0

λm−1−j‖e−λφ(eλφ∇e−λφ)jw‖L2(U)

. λ
1
2

m−1∑
j=0

λm−1−j‖e−λφ∇jw‖L2(U).

Applying (2.13) and the above, we conclude, for any λ ≥ λ0, that

λ
1
2‖v‖Hm−1

λ (U) . ‖e−λφP0w‖L2(U)

. ‖e−λφP0(e
λφv)‖L2(U),

which completes the proof of (2.16). �

2.3. Local Unique Continuation. The next definition captures the precise formulation
of the unique continuation problem that we wish to solve in these notes:

Definition 2.20. We say that (P ,Σ, ρ) has the local unique continuation property at x0 iff
there exists a neighborhood U of x0 such that if w ∈ C∞(Ω;C) satisfies Pw ≡ 0 on Ω, and
if w ≡ 0 on the region {x ∈ Ω | ρ(x) ≤ 0}, then w ≡ 0 on U as well.

In other words, if (P ,Σ, ρ) has the local unique continuation property at some x0 ∈ Σ,
then any solution of Pw = 0 that vanishes when ρ ≤ 0 can be uniquely continued as a zero
solution past Σ, at least near x0. The main goal of the present notes is to identify conditions
under which (P ,Σ, ρ) has the unique continuation property at x0.

Remark 2.21. Definition 2.20 is sensitive to the chosen orientation of Σ. In particular, it
is important that we are continuing solutions of Pw = 0 from ρ ≤ 0 into ρ > 0.
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We now establish the connection between unique continuation and Carleman estimates. In
short, proving a Carleman estimate leads to a corresponding unique continuation property:

Theorem 2.22. Suppose that (P ,Σ, ρ) admits a Carleman estimate at x0. Then, (P ,Σ, ρ)
has the local unique continuation property at x0.

Proof. Let U , φ, and λ0 be the objects from Definition 2.16 corresponding to the assumed
Carleman estimate at x0. Then, by Definition 2.12, we can find an open V ⊆ U and δ > 0

such that φ(x) > φ(x0) for any x ∈ V with ρ(x) > 0, and such that (2.9) holds.
Furthermore, let χ ∈ C∞(R; [0, 1]) be a cutoff function satisfying

(2.17) χ|[− δ
3
, δ
3
] ≡ 1, χ|R\[− 2δ

3
, 2δ
3
] ≡ 0,

and define the following (non-empty by assumption) subsets of V :

V< :=
{
x ∈ V

∣∣ ρ(x) > 0, φ(x)− φ(x0) ≤ δ
3

}
,(2.18)

V> :=
{
x ∈ V

∣∣ ρ(x) > 0, δ
3
≤ φ(x)− φ(x0) ≤ 2δ

3

}
.

Now, let w ∈ C∞(Ω;C) satisfy Pw ≡ 0, and assume w ≡ 0 on {ρ ≤ 0}. By (2.9),

supp[χ(φ)w] ⊆ {x ∈ V̄ | ρ(x) ≥ 0, φ(x)− φ(x0) ≤ δ} ⊆ V ,

and hence χ(φ)w ∈ C∞
0 (U ;C). Consequently, we can apply Definition 2.16 to χ(φ)w, which

yields the following Carleman estimate for each λ ≥ λ0:
m−1∑
j=0

λm−1−j‖e−λφ∇jw‖L2(V<) ≤
m−1∑
j=0

λm−1−j‖e−λφ∇j[χ(φ)w]‖L2(U)(2.19)

. λ−
1
2‖e−λφP0[χ(φ)w]‖L2(U).

Recalling that Pw ≡ 0, we can then expand and estimate

|P0[χ(φ)w]| . χ(φ) |P0w|+
m−1∑
j=0

m−j∑
k=1

|χ(k)(φ)||∇jw|(2.20)

.
m−1∑
j=0

m−j∑
k=0

|χ(k)(φ)||∇jw|,

where the constants of the inequalities can depend on φ and the coefficients of P (but not on
w). Moreover, from (2.17) and (2.18), we see that the right-hand side of (2.20) is supported
in V< ∪ V>. Thus, combining (2.19) and (2.20), we obtain the estimate

m−1∑
j=0

λm−1−j‖e−λφ∇jw‖L2(V<) . λ−
1
2

m−1∑
j=0

‖e−λφ∇jw‖L2(V<) + λ−
1
2

m−1∑
j=0

‖e−λφ∇jw‖L2(V>).

Also, for large enough λ, the first term on the right can be absorbed into the left:

(2.21)
m−1∑
j=0

‖e−λφ∇jw‖L2(V<) . λ−
1
2

m−1∑
j=0

‖e−λφ∇jw‖L2(V>).
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From the definitions (2.18), we see that

e−λφ|V< ≥ e−
λδ
3 , e−λφ|V> ≤ e−

λδ
3 .

Using the above, we can then remove the exponential weights from (2.21):
m−1∑
j=0

‖∇jw‖L2(V<) . λ−
1
2

m−1∑
j=0

‖∇jw‖L2(V>).

Taking λ↗ ∞, we conclude that w ≡ 0 on V<.
From the above, along with our original assumptions for w, it follows that w ≡ 0 on the

neighborhood W := V ∩ {φ− φ(x0) <
δ
3
} of x0. Finally, as W is independent of w, we have

shown that (P ,Σ, ρ) satisfies the local unique continuation property at x0. �

In particular, Theorem 2.22 reduces the problem of deriving the local unique continuation
property to that of proving a Carleman estimate. Thus, in the remainder of these notes, we
will focus our attention on establishing Carleman estimates.
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3. The Symbol Calculus

The aim of these notes is to study Carleman estimates through microlocal methods. In
this section, we give a brief survey of the microlocal background that we will need to prove
our Carleman estimates. Then, we reformulate the conjugated Carleman estimate (2.16) as
a corresponding pointwise inequality for the appropriate symbols.

3.1. λ-Parametrized Symbols. A key idea in microlocal analysis is to systematically study
classes of operators through corresponding classes of functions known as symbols. While we
wish to do this here for Carleman estimates, the process runs into some complications.

In particular, from Proposition 2.19, we saw that in order to prove Carleman estimates
for P0, we must deal with conjugated operators of the form e−λφP0e

λφ, which contain terms
with lower-order derivatives paired with an arbitrarily large parameter λ. Thus, we must also
view these lower-order terms as “principal” in our analysis. This motivates the construction
of a modified “λ-dependent” symbol calculus, which we describe below:

Definition 3.1. Given s ∈ R, we let Λs(Rn) be the space of all b ∈ C∞(Rn×Rn× (0,∞);C)
such that for any multi-indices I, J , there exists C > 0 (depending b, I, J) such that

(3.1) |∇x,I∇ξ,Jb(x, ξ, λ)| ≤ C(λ2 + |ξ|2)
s−|J|

2 , (x, ξ, λ) ∈ Rn × Rn × [1,∞).

Such a function b is called a (smooth, λ-parametrized) symbol on Rn of order s.

We can then associate such symbols with a corresponding class of operators.

Definition 3.2. We will adopt the following convention for the Fourier transform:

(3.2) ϕ̂(ξ) :=

∫
Rn

e−ix·ξϕ(x) dx, ϕ ∈ C∞
0 (Rn;C).

Definition 3.3. Given s ∈ R, λ ∈ [1,∞), and b ∈ Λs(Rn), we define the operator opλ(b) by

(3.3) opλ(b)ψ(x) :=
1

(2π)n

∫
Rn

eix·ξb(x, ξ, λ)ψ̂(ξ) dξ, ψ ∈ C∞
0 (Rn;C), x ∈ Rn.

opλ(b) is called a (λ-parametrized) pseudodifferential operator on Rn of order s.

Remark 3.4. For any integer M ≥ 0, the (λ-parametrized) polynomial

(3.4) b ∈ C∞(Rn × Rn × (0,∞);C), b(x, ξ, λ) =
∑

|I|+j≤M

bI,j(x) ξIλ
j,

with bI,j ∈ C∞
0 (Rn;C) for each such I and j, defines an element of ΛM(Rn). By elementary

properties of Fourier transforms, b is associated with a family of differential operators:

(3.5) opλ(b) =
∑

|I|+j≤M

bI,jλj DI , λ ∈ [1,∞).

Remark 3.5. Observe also that for any s ∈ R, the function

(3.6) γs ∈ C∞(Rn × Rn × (0,∞);C), γs(x, ξ, λ) := (λ2 + |ξ|)
s
2
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defines an element of Λs(Rn). Furthermore, a direct computation using (3.3) yields

(3.7) opλ(γ
s) = (λ2 −∆)

s
2 , λ ∈ [1,∞).

Proposition 3.6. Let s ∈ R and b ∈ Λs(Rn). Then:
• There exists C > 0 such that for any ψ ∈ C∞

0 (Rn;C) and λ ∈ [1,∞),

(3.8) ‖ opλ(b)ψ‖L2(Rn) ≤ C‖ψ‖Hs
λ(Rn).

• There exists C > 0 such that for any ψ ∈ C∞
0 (Rn;C) and λ ∈ [1,∞),

(3.9) 〈opλ(b)ψ, ψ〉L2(Rn) ≤ C‖ψ‖
H

s
2
λ (Rn)

.

Proof. (We defer the proof to the Appendix to avoid an extended technical detour.) �

One quantity that will often arise is the Poisson bracket, which we now recall:

Definition 3.7. Given q1, q2 ∈ C∞(U ×Rn;C) and b1, b2 ∈ C∞(U ×Rn × (0,∞);C), where
U ⊆ Rn is open, we define their Poisson bracket by

{q1, q2} := ∇ξq1 · ∇xq2 −∇xq1 · ∇ξq2 ∈ C∞(U × Rn;C),(3.10)
{b1, b2} := ∇ξb1 · ∇xb2 −∇xb1 · ∇ξb2 ∈ C∞(U × Rn × (0,∞);C),

where ∇x and ∇ξ denote gradients in the “U” and “Rn” components, respectively.

Remark 3.8. In the context of Definition 3.7, any ψ ∈ C∞(U ;C) can also be viewed as an
element of C∞(U × Rn;C) that is independent of the latter argument. This allows one to
make sense of Poisson brackets involving ψ—e.g., for any q ∈ C∞(U × Rn;C), we have

{q, ψ}(x, ξ) = ∇ξq(x, ξ) · ∇ψ(x), (x, ξ) ∈ U × Rn.

Remark 3.9. Note that if b1 ∈ Λs1(Rn) and b2 ∈ Λs2(Rn), with s1, s2 ∈ R, then

{b1, b2} ∈ Λs1+s2−1(Rn).

We now recall some standard correspondences between algebraic operations on pseudodif-
ferential operators and algebraic operations on the corresponding symbols:

Proposition 3.10. Let s, s1, s2 ∈ R, and let b ∈ Λs(Rn), b1 ∈ Λs1(Rn), b2 ∈ Λs2(Rn):
• There exists r ∈ Λs1+s2−2(Rn) such that

(3.11) opλ(b1) opλ(b2) = opλ(b1b2 − i∇ξb1 · ∇xb2 + r), λ ∈ [1,∞).

• There exists r ∈ Λs1+s2−2(Rn) such that

(3.12) [opλ(b1), opλ(b2)] = opλ(−i{b1, b2}+ r), λ ∈ [1,∞).

• There exists r ∈ Λs−1(Rn) such that

(3.13) opλ(b)
∗ = opλ(b̄+ r), λ ∈ [1,∞).

Proof. (We defer the proof to the Appendix to avoid an extended technical detour.) �
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The final ingredient from microlocal analysis that we will need is a way to convert symbol
inequalities to bounds for corresponding operators. This is achieved through a semiclassical
variant of the sharp Gårding inequality, for which we give a precise statement below:

Theorem 3.11. Let s ∈ R and λ0 ≥ 1, and suppose b ∈ Λs(Rn) satisfies

(3.14) b(x, ξ, λ) ≥ 0, (x, ξ, λ) ∈ Rn × Rn × [λ0,∞).

Then, there exists C > 0 such that for any λ ≥ λ0 and ψ ∈ C∞
0 (Rn;C),

(3.15) Re〈opλ(b)ψ, ψ〉L2(Rn) ≥ −C‖ψ‖2
H

s−1
2

λ (Rn)
.

Proof. (We defer the proof to the Appendix to avoid an extended technical detour.) �

Remark 3.12. The crucial semiclassical feature of (3.15), in contrast to the basic sharp
Gårding inequality, is that (3.15)—in particular the constant C—is uniform in λ.

3.2. Positive Commutators. We now turn our attention back to our differential operator
P . First, we associate transform its principal symbol p to a conjugated symbol:

Definition 3.13. Given any φ ∈ C∞(Ω;R), we define pφ ∈ C∞(Ω× Rn × (0,∞);C) by

(3.16) pφ(x, ξ, λ) := p(x, ξ − iλ dφ(x)).

Remark 3.14. Note if χ ∈ C∞
0 (Ω;R) is a cutoff, then we can define an associated symbol

χpφ ∈ Λm(Rn), (χpφ)(x, ξ, λ) := χ(x) pφ(x, ξ, λ).

Proposition 3.15. Let φ ∈ C∞(Ω;R), and suppose U ⊂⊂ Ω is open. Then, there is some
rφ ∈ Λm−1(Rn) such that for any cutoff χ ∈ C∞(Ω;R) satisfying χ|U ≡ 1, we have

(3.17) e−λφP0(e
λφv) = opλ(χpφ + rφ)v, λ ∈ [1,∞), v ∈ C∞

0 (U ;C).

Proof. First, observe that the left-hand side of (3.17) can be written as

(3.18) e−λφP0e
λφ =

∑
|I|=m

pI (D − iλ dφ)I .

Moreover, by (2.6), (3.3), and (3.16),

opλ(χpφ)v(x) =
χ(x)

(2π)n

∑
|I|=m

pI(x)

∫
Rn

eix·ξ(ξ − iλdφ(x))I v̂(ξ) dξ,

which, by (3.18) and basic properties of the Fourier transform, coincides with χe−λφP0(e
λφv),

except for terms obtained when instances of D in the right-hand side of (3.18) hit instances
of dφ. These terms together comprise a differential operator of the form

R :=
∑

|I|+j<m

rI λjDI , rI ∈ C∞
0 (Rn;C), λ ∈ [1,∞).

As a result, we obtain that

χe−λφP0e
λφ − opλ(χpφ) = opλ(rφ), rφ :=

∑
|I|+j<m

rI λjξI ∈ Λm−1(Rn).
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The desired (3.17) now follows, since χ ≡ 1 on the support of any v ∈ C∞
0 (U ;C). �

Finally, we reduce the Carleman estimate (2.13) to a commutator estimate for pφ:

Proposition 3.16. (P ,Σ, ρ) admits a Carleman estimate at x0 if there exist a neighborhood
U ′ ⊂⊂ Ω of x0, a Carleman weight φ ∈ C∞(Ω;R) for ρ at x0, and constants C > 0, λ0 ≥ 1

such that the following inequality holds for every x ∈ U ′, ξ ∈ Rn, and λ ≥ λ0:

(3.19) λ0(λ
2 + |ξ|2)−

1
2 |pφ(x, ξ, λ)|2 + {Re pφ, Im pφ}(x, ξ, λ) ≥ Cλ(λ2 + |ξ|2)m−1.

Proof. Fix a neighborhood U ⊂⊂ U ′ of x0, as well as a cutoff function

(3.20) χ ∈ C∞
0 (U ′; [0, 1]), χ|U ≡ 1.

Moreover, let C be as in (3.19), and let b ∈ C∞(Rn × Rn × (0,∞);C) be given by

b(x, ξ, λ) := [br(x, ξ, λ)]
2 + [bi(x, ξ, λ)]

2 + bc(x, ξ, λ) + b−(x, ξ, λ),(3.21)

br(x, ξ, λ) := χ(x)λ
1
2
0 (λ

2 + |ξ|2)−
1
4 Re pφ(x, ξ, λ),

bi(x, ξ, λ) := χ(x)λ
1
2
0 (λ

2 + |ξ|2)−
1
4 Im pφ(x, ξ, λ),

bc(x, ξ, λ) := [χ(x)]2 {Re pφ, Im pφ}(x, ξ, λ),
b−(x, ξ, λ) := −[χ(x)]2Cλ(λ2 + |ξ|2)m−1.

Note in particular that b ∈ Λ2m−1(Rn), and that (3.19) and (3.20) imply

b(x, ξ, λ) ≥ 0, (x, ξ, λ) ∈ Rn × Rn × [λ0,∞).

Thus, Theorem 3.11 yields some C ′ > 0 such that for any v ∈ C∞
0 (U ;C) and λ ≥ λ0,

−C ′‖v‖2Hm−1
λ (U)

≤ Re〈opλ(b2r)v, v〉L2(Rn) +Re〈opλ(b2i )v, v〉L2(Rn)(3.22)

+Re〈opλ(bc)v, v〉L2(Rn) +Re〈opλ(b−)v, v〉L2(Rn).

In (3.22) and below, we will let C ′, C ′′ > 0 denote various constants which are independent
of v and λ, and whose values are allowed to change between lines. Recalling (3.3), and noting
that v is supported only where χ is identically 1, we obtain

〈opλ(b−)v, v〉L2(Rn) = − C

(2π)n

∫
Rn

λ(λ2 + |ξ|2)m−1v̂(ξ)
[ ∫

Rn

e−ix·ξv(x) dx
]
dξ(3.23)

≤ −C ′′λ‖v‖2Hm−1
λ (U)

,

for v and λ as above. Furthermore, since opλ(bc) is a differential (and hence local) operator,
and hence χ ≡ 1 on the support of v, then (3.3) also yields that

〈opλ(bc)v, v〉L2(Rn) =
1

(2π)n

∫
U

∫
Rn

eix·ξ{Re pφ, Im pφ}(x, ξ, λ)v̂(ξ)v(x) dξdx(3.24)

= 〈opλ({χRe pφ, χ Im pφ})v, v〉L2(Rn).

Combining (3.22)–(3.24) then yields

C ′′λ‖v‖2Hm−1
λ (U)

≤ Re〈opλ(b2r)v, v〉L2(Rn) +Re〈opλ(b2i )v, v〉L2(Rn)(3.25)
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+Re〈opλ({χRe pφ, χ Im pφ})v, v〉L2(Rn) + C ′‖v‖2Hm−1
λ (U)

.

Noting that br, bi ∈ Λm− 1
2 (Rn) are both real valued, then Proposition 3.10 implies

opλ(br)
∗ opλ(br) = opλ(b

2
r + ρr), opλ(bi)

∗ opλ(bi) = opλ(b
2
i + ρi),

for some ρr, ρi ∈ Λ2m−2(Rn). In particular, Proposition 3.6 and the above yield

〈opλ(b2r)v, v〉L2(Rn) ≤ ‖ opλ(br)v‖2L2(Rn) + C ′‖v‖2Hm−1
λ (U)

,(3.26)

〈opλ(b2i )v, v〉L2(Rn) ≤ ‖ opλ(bi)v‖2L2(Rn) + C ′‖v‖2Hm−1
λ (U)

.

Next, we estimate the L2-norms of opλ(br)v and opλ(bi)v using (3.7), Proposition 3.6, Propo-
sition 3.10, and the definitions (3.21) of br and bi. Combining this with (3.26) yields

〈opλ(b2r)v, v〉L2(Rn) ≤
∥∥λ 1

2
0 (λ

2 −∆)−
1
4 opλ(χRe pφ)v

∥∥2

L2(Rn)
+ C ′‖v‖2Hm−1

λ (U)
,(3.27)

〈opλ(b2i )v, v〉L2(Rn) ≤
∥∥λ 1

2
0 (λ

2 −∆)−
1
4 opλ(χ Im pφ)v

∥∥2

L2(Rn)
+ C ′‖v‖2Hm−1

λ (U)
,

Next, consider the operators

(3.28) J := 1
2
[opλ(χpφ) + opλ(χpφ)

∗], K := 1
2
[opλ(χpφ)− opλ(χpφ)

∗].

Applying Proposition 3.10 to the above, we can then write

J = opλ(χRe pφ + αr), αr ∈ Λm−1(Rn),
K = i opλ(χ Im pφ + αi), αi ∈ Λm−1(Rn),

[J,K] = opλ({χRe pφ, χ Im pφ}+ αc), αc ∈ Λ2m−2(Rn).

Applying the above along with Proposition 3.6, (3.25), and (3.27), we then obtain

C ′′λ‖v‖2Hm−1
λ (U)

≤
∥∥λ 1

2
0 (λ

2 −∆)−
1
4Jv

∥∥2

L2(Rn)
+
∥∥λ 1

2
0 (λ

2 −∆)−
1
4Kv

∥∥2

L2(Rn)
(3.29)

+Re〈[J,K]v, v〉L2(Rn) + C ′‖v‖2Hm−1
λ (U)

≤ ‖Jv‖2L2(Rn) + ‖Kv‖2L2(Rn) +Re〈[J,K]v, v〉L2(Rn) + C ′‖v‖2Hm−1
λ (U)

,

where in the last step, we also used that λ ≥ λ0.
Since J∗ = J and K∗ = −K, and since v has compact support, a computation yields

‖ opλ(χpφ)v‖2L2(Rn) = 〈(J +K)v, (J +K)v〉L2(Rn)

= ‖Jv‖2L2(Rn) + ‖Kv‖2L2(Rn) +Re〈[J,K]v, v〉L2(Rn).

The above, combined with (3.29), results in the bound

C ′′λ‖v‖2Hm−1
λ (U)

≤ ‖ opλ(χpφ)v‖2L2(Rn) + C ′‖v‖2Hm−1
λ (U)

.

Finally, applying Proposition 3.6 and Proposition 3.15 to the above yields

C ′′λ‖v‖2Hm−1
λ (U)

≤ ‖e−λφP0(e
λφv)‖2L2(U) + C ′‖v‖2Hm−1

λ (U)
.

By increasing λ0 if needed, the last term on the right-hand side can be absorbed into the
left, and we obtain the estimate (2.16); the result now follows from Proposition 2.19. �
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4. Pseudoconvexity and Unique Continuation

In this section, we state and prove Hörmander’s general local unique continuation result for
linear differential operators, for which the crucial condition needed is strong pseudoconvexity.
Under this assumption, we prove a Carleman estimate of the form (2.13).

4.1. Pseudoconvexity. The first task is give a precise definition of pseudoconvexity:

Definition 4.1. (Σ, ρ) is pseudoconvex at x0 with respect to P iff for all ξ ∈ Rn \ {0}, if

(4.1) p(x0, ξ) = {p, ρ}(x0, ξ) = 0,

then the following inequality holds:

(4.2) −Re{p̄, {p, ρ}}(x0, ξ) > 0.

Definition 4.2. (Σ, ρ) is strongly pseudoconvex at x0 with respect to P iff:
• (Σ, ρ) is pseudoconvex at x0 with respect to P.
• For any λ > 0 and ξ ∈ Rn, if

(4.3) pρ(x0, ξ, λ) = {pρ, ρ}(x0, ξ, λ) = 0,

then the following inequality holds:

(4.4) {Re pρ, Im pρ}(x0, ξ, λ) > 0.

Remark 4.3. For future reference, we note here the identity

(4.5) {Re pφ, Im pφ} = 1
2i
{pφ, pφ}, φ ∈ C∞(Ω;R).

Remark 4.4. Direct computations using (3.16) yield, for any ξ ∈ Rn, that

(4.6) lim
λ↘0

pρ(x0, ξ, λ) = p(x0, ξ), lim
λ↘0

{pρ, ρ}(x0, ξ, λ) = {p, ρ}(x0, ξ).

Thus, the assumption (4.1) (for ξ 6= 0) is simply the condition (4.3) as λ↘ 0.

Strong pseudoconvexity will be the crucial condition required for our most general local
unique continuation result. However, there are simpler special cases worth mentioning:

Proposition 4.5. Suppose the following conditions hold:
• Given any ξ ∈ Rn \ {0}, if p(x0, ξ) = 0, then {p, ρ}(x0, ξ) 6= 0.
• For any (ξ, λ) ∈ Rn × (0,∞), if pρ(x0, ξ, λ) = 0, then {pρ, ρ}(x0, ξ, λ) 6= 0.

Then, (Σ, ρ) is strongly pseudoconvex at x0.

Proof. First, for any λ > 0 and ξ ∈ Rn, our second assumption implies that (4.3) can never
hold. Thus, the second condition in Definition 4.2 is vacuously satisfied.

Similarly, for any ξ ∈ Rn \ {0}, our first assumption implies (4.1) can never hold. Thus,
(Σ, ρ) is pseudoconvex at x0 with respect to P , which completes the proof. �

Proposition 4.6. Suppose that Σ is strictly hyperbolic at x0 with respect to P. Then, (Σ, ρ)
is also strongly pseudoconvex at x0 with respect to P.
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Proof. Fix (ξ, λ) ∈ Rn × (0,∞). First, if ξ ∧ dρ(x0) 6= 0, then

−i{pρ, ρ}(x0, ξ, λ) = ∂τ [p(x0, ξ − iτ dρ(x0))]|τ=λ ,
−i{p, ρ}(x0, ξ) = ∂τ [p(x0, ξ − iτ dρ(x0))]|τ=0 ,

and both of the above are nonzero, since by Definition 2.11, the polynomial fp,x0,ξ defined
in (2.8) (with our current ξ) has only simple roots.

Next, suppose ξ ∧ dρ(x0) = 0. Then, there is some σ ∈ C \ {0} such that

ξ − iλ dρ(x0) = σ dρ(x0), pρ(x0, ξ, λ) = σm p(x0, dρ(x0)).

In particular, since Σ is non-characteristic at x0, we have pρ(x0, ξ, λ) 6= 0. Similarly, if ξ 6= 0,
then there is again some σ ∈ C \ {0} satisfying that

ξ = σ dρ(x0), p(x0, ξ) = σm p(x0, dρ(x0)),

the latter of which is nonzero since Σ is non-characteristic at x0.
Thus, the assumptions of Proposition 4.5 are now satisfied, and the result follows. �

We conclude with some explicit formulas for the quantities in (4.2) and (4.4):

Proposition 4.7. The following hold for any φ ∈ C∞(Ω;R), ξ ∈ Rn, and λ ∈ (0,∞):

−Re{p̄, {p, φ}}(x0, ξ) = −∇ξp̄(x0, ξ) · ∇2φ(x0) · ∇ξp(x0, ξ)(4.7)

− Re
n∑

α,β=1

∂2xαξβp(x0, ξ)∂ξα p̄(x0, ξ)∂xβφ(x0)

+ Re
n∑

α,β=1

∂2ξαξβp(x0, ξ)∂xα p̄(x0, ξ)∂xβφ(x0),

−i{pφ, pφ}(x0, ξ, λ) = Im[∇ξp̄(x, ξ − iλ dφ(x)) · ∇xp(x, ξ − iλ dφ(x))]

− λ∇ξp̄(x, ξ − iλ dφ(x)) · ∇2φ(x) · ∇ξp(x, ξ − iλ dφ(x)).

Proof. For the first part of (4.7), we begin by computing

{p̄, {p, φ}} = {p̄,∇ξp · ∇φ}
= ∇ξp̄ · ∇x(∇ξp · ∇φ)−∇xp̄ · ∇ξ(∇ξp · ∇φ).

In particular, evaluating the above at (x0, ξ), we obtain

{p̄, {p, φ}}(x0, ξ) = ∇ξp̄(x0, ξ) · ∇2φ(x0) · ∇ξp(x0, ξ)

+
n∑

α,β=1

∂2xαξβp(x0, ξ)∂ξα p̄(x0, ξ)∂xβφ(x0)

−
n∑

α,β=1

∂2ξαξβp(x0, ξ)∂xα p̄(x0, ξ)∂xβφ(x0).

The first part of (4.7) follows from the above, along with the observation that the first term
on the right-hand side of the above is always real-valued.
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Next, for the second part of (4.7), we directly compute

−i{pφ, pφ}(x, ξ, λ) = Im∇ξ

[
p(x, ξ − iλ dφ(x))

]
· ∇x[p(x, ξ − iλ dφ(x))]

= Im[∇ξp̄(x, ξ − iλ dφ(x)) · ∇xp(x, ξ − iλ dφ(x))]

− Im[iλ∇ξp̄(x, ξ − iλ dφ(x)) · ∇2φ(x) · ∇ξp(x, ξ − iλ dφ(x))].

The desired identity follows, since the following is always real-valued:

∇ξp̄(x, ξ − iλ dφ(x)) · ∇2φ(x) · ∇ξp(x, ξ − iλ dφ(x))). �

4.2. Some Expansions. We now present some estimates that will be useful for our unique
continuation result. We begin with some properties of the weights φµ from Proposition 2.15.

Definition 4.8. Fix µ∗ ≥ 1 large enough so that Uµ∗ ⊂⊂ Ω. Given any µ ≥ µ∗, we set

(4.8) Uµ := {x ∈ Ω | |x− x0| < µ−2}.

Proposition 4.9. Let µ ≥ µ∗, and let φµ be defined as in (2.10). Then, for any x ∈ Uµ,

∇φµ(x) = ∇ρ(x0) +∇2ρ(x0) · (x− x0)− 2µ[∇ρ(x0) · (x− x0)]∇ρ(x0)(4.9)
+ µ−1(x− x0),

∇2φµ(x) = ∇2ρ(x0)− 2µ[∇ρ(x0)⊗∇ρ(x0)] + µ−1In,

where In denotes the n× n identity matrix. Furthermore:
• There exists a constant C > 0 such that for any x ∈ Uµ,

(4.10) |∇φµ(x)−∇ρ(x0)| ≤ Cµ−1.

• There exist constants C,C ′ > 0 such that given any (x, ξ, λ) ∈ U × Rn × [1,∞), the
following inequality holds, with ζµ := ξ − iλ dφµ(x):

µ(λ2 + |ξ|2)−
1
2 |pφµ(x, ξ, λ)|2 + {Re pφµ , Im pφµ}(x, ξ, λ)(4.11)

≥ C ′µ|ζµ|−1|p(x, ζµ)|2 + µλ |∇ξp(x, ζµ) · ∇ρ(x0)|2 + 1
2
Im(∇ξp̄ · ∇xp)(x, ζµ)

− 1
2
λ∇ξp̄(x, ζµ) · ∇2ρ(x0) · ∇ξp(x, ζµ)− Cµ−1λ |ζµ|2m−2.

Proof. First, both identities in (4.9) follow from directly differentiating the defining formula
(2.10). Furthermore, (4.10) then follows from (4.8) and the first part of (4.9).

Next, for (4.11), we begin by applying (3.16), (4.5), and the last part of (4.7):

µ(λ2 + |ξ|2)−
1
2 |pφµ(x, ξ, λ)|2 + {Re pφµ , Im pφµ}(x, ξ, λ)

≥ C ′µ|ζµ|−1|p(x, ζµ)|2 + 1
2
Im(∇ξp̄ · ∇xp)(x, ζµ)− 1

2
λ∇ξp̄(x, ζµ) · ∇2φµ(x) · ∇ξp(x, ζµ).

(In the above, we also observed that |ζµ|2 ' λ2 + |ξ|2 on Uµ.) The result now follows from
applying the last part of (4.9) to the above, and noting that

|∇ξp̄(x, ζµ)|2 . |ζµ|2m−2,

since the left-hand side of the above is homogeneous of order 2m− 2 in ζµ. �
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We will also need the following estimate in our unique continuation result:

Proposition 4.10. Suppose p is real-valued. Moreover, let µ ≥ µ∗, and suppose φµ is defined
as in (2.10). Then, there exists some constant C > 0 such that the following inequality holds
for all (x, ξ, λ) ∈ Uµ × Rn × [1,∞), and with ζµ := ξ − iλ dφµ(x):

Im(∇ξp̄ · ∇xp)(x, ζµ)− λ∇ξp̄(x, ξ) · ∇2ρ(x0) · ∇ξp(x, ξ)(4.12)
≥ −λRe{p̄, {p, ρ}}(x0, ξ)− Cµ−1λ|ζµ|2m−2 − Cλ2|ζµ|2m−3.

Proof. Applying Taylor’s theorem about λ = 0, we have, for (x, ξ, λ) ∈ Uµ × Rn × (0,∞),

Im(∇ξp̄ · ∇xp)(x, ζµ) = Im(∇ξp̄ · ∇xp)(x, ξ) + λ ∂τ [Im(∇ξp̄ · ∇xp)(x, ζµ)]|τ=0(4.13)
+ λ2 σ(x, ξ, λ)

= −λRe∇φµ(x) · ∇ξ(∇ξp̄ · ∇xp)(x, ξ) + λ2 σ(x, ξ, λ),

where we noted Im(∇ξp̄ ·∇xp) ≡ 0 due to p being real-valued, and where σ is a homogeneous
polynomial in (ξ, λ) of order 2m− 3 and hence satisfies (as |ζµ|2 ' λ2 + |ξ|2 and Uµ ⊂⊂ Ω)

(4.14) |σ(x, ξ, λ)| . |ζµ|2m−3, (x, ξ, λ) ∈ Uµ × Rn × [1,∞).

Further expanding the right-hand side of (4.13), we obtain

Im(∇ξp̄ · ∇xp)(x, ζµ) = λRe
n∑

α,β=1

Rαβ(x0, ξ)∂xβρ(x0) + E(x, ξ, λ),(4.15)

Rαβ(x, ξ) := (∂2ξαξβ p̄∂xαp− ∂2xαξβp∂ξα p̄)(x, ξ),

E(x, ξ, λ) := λRe
n∑

α,β=1

Rαβ(x, ξ)[∂xβφµ(x)− ∂xβρ(x0)] + λ2 σ(x, ξ, λ)

+ λRe
n∑

α,β=1

[Rαβ(x, ξ)−Rαβ(x0, ξ)]∂xβρ(x0).

Since p is a homogeneous polynomial in ξ of order m, then (4.8), (4.10), and (4.14) yield

(4.16) |E(x, ξ, λ)| . µ−1λ|ζµ|2m−2 + λ2|ζµ|2m−3.

Combining the first part of (4.7), (4.15), and (4.16), we see there exists C ′ > 0 with

Im(∇ξp̄ · ∇xp)(x, ζµ)− λ∇ξp̄(x, ξ) · ∇2ρ(x0) · ∇ξp(x, ξ)

≥ λ [∇ξp̄(x0, ξ) · ∇2ρ(x0) · ∇ξp(x0, ξ)−∇ξp̄(x, ξ) · ∇2ρ(x0) · ∇ξp(x, ξ)]

− λRe{p̄, {p, ρ}}(x0, ξ)− C ′µ−1λ|ζµ|2m−2 − C ′λ2|ζµ|2m−3.

The desired (4.12) follows immediately from the above after recalling (4.8). �

4.3. The Main Result. We are now prepared to state and prove our main unique contin-
uation result. In practice, the remaining task is to prove the symbol inequality (3.19).

Theorem 4.11. Suppose p is real-valued, and assume (Σ, ρ) is strongly pseudoconvex at x0
with respect to P. Then, (P ,Σ, ρ) has the local unique continuation property at x0.
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Proof. From Theorem 2.22, it suffices to show that (P ,Σ, ρ) admits a Carleman estimate at
x0. For sufficiently large µ ≥ µ∗, we define φµ and Uµ as in (2.10) and (4.8), respectively.
Note that Proposition 2.15 implies φµ is a Carleman weight for ρ at x0. Thus, by Proposition
3.16, it suffices to show that there exists sufficiently large µ0 ≥ λ0 > 0 such that

(4.17) µ(λ2 + |ξ|2)−
1
2 |pφµ(x, ξ, λ)|2 + {Re pφµ , Im pφµ}(x, ξ, λ) ≥ µ−1λ(λ2 + |ξ|2)m−1

holds for all µ ≥ µ0, x ∈ Uµ, ξ ∈ Rn, and λ ≥ λ0.
Suppose, for a contradiction, that the inequality (4.17) fails to hold. Then, there are

(4.18) xk ∈ Uk, (ξk, λk) ∈ Rn × [k2,∞), N 3 k ≥ µ∗,

such that the following holds for all k ≥ µ∗:

(4.19) k(λ2k + |ξk|2)−
1
2 |pφk(xk, ξk, λk)|2 + {Re pφk , Im pφk}(xk, ξk, λk) < 1

k
λk(|ξk|2 + λ2k)

m−1.

For convenience, we define, for each k ≥ µ∗, the shorthands

(4.20) ζk := ξk − iλk dφk(xk), |ζk|2 ' λ2k + |ξk|2.

as well as the normalizations

(4.21) Zk := |ζk|−1ζk, Ξk := |ζk|−1ξk, Λk := |ζk|−1λk.

Now, since xk ∈ Uk, then (4.8) and (4.18) imply |xk − x0| < k−2, and by (4.9),

(4.22) lim
k→∞

xk = x0, lim
k→∞

∇φk(xk) = ∇ρ(x0).

Furthermore, passing to a subsequence, we obtain additional limits

(4.23) lim
k→∞

(Ξk,Λk) = (Ξ0,Λ0) 6= (0, 0), lim
k
Zk = Z0, |Z0| = 1.

Using (4.11) (with µ := k), along with (4.20), we can expand (4.19) as

C∗k
−1λk|ζk|2m−2 ≥ C†k |ζk|−1|p(xk, ζk)|2 + kλk |∇ξp(xk, ζk) · ∇ρ(x0)|2(4.24)

+ 1
2
Im(∇ξp̄ · ∇xp)(xk, ζk)

− 1
2
λk∇ξp̄(xk, ζk) · ∇2ρ(x0) · ∇ξp(xk, ζk),

for some C∗, C† > 0. Dividing (4.24) by k|ζk|2m−1 then yields

C∗Λkk
−2 ≥ C†|p(xk, Zk)|2 + 1

2k
Im(∇ξp̄ · ∇xp)(xk, Zk) + Λk |∇ξp(xk, Zk) · ∇ρ(x0)|2(4.25)

− 1
2k
Λk∇ξp̄(xk, Zk) · ∇2ρ(x0) · ∇ξp(xk, Zk).

From here, the proof splits into two cases, depending on the value of Λ0.
First, suppose Λ0 > 0. Letting k ↗ ∞ in (4.25), then (4.22) and (4.23) yield

(4.26) |p(x0, Z0)|2 = 0, pρ(x0,Ξ0,Λ0) = 0.

Dividing (4.24) by kλk|ζk|2m−2 and discarding the non-negative term |p(xk, ζk)|2, we have

C∗k
−2 ≥ 1

2
k−1Λ−1

k Im(∇ξp̄ · ∇xp)(xk, Zk) + |∇ξp(xk, Zk) · ∇ρ(x0)|2

− 1
2
k−1∇ξp̄(xk, Zk) · ∇2ρ(x0) · ∇ξp(xk, Zk).
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Letting k ↗ ∞, noting that Λ−1
k → Λ−1

0 > 0, and using (4.22) and (4.23), we see that

(4.27) |∇ξp(x0, Z0) · ∇ρ(x0)|2 = 0, {pρ, ρ}(x0,Ξ0,Λ0) = 0.

Now, dropping both non-negative terms in (4.24) and dividing the result by |ζk|2m−1 yields

C∗k
−1Λk ≥ 1

2
Im(∇ξp̄ · ∇xp)(xk, Zk)− 1

2
Λk∇ξp̄(xk, Zk) · ∇2ρ(x0) · ∇ξp(xk, Zk).

Taking the limit k ↗ ∞ in the above and recalling (4.22)–(4.23) results in the inequality

Im(∇ξp̄ · ∇xp)(x0, Z0)− Λ0∇2ρ(x0) · (∇ξp̄(x0, Z0),∇ξp(x0, Z0)) ≤ 0.

Combining the above with the second part of (4.7) yields

(4.28) −i{pρ, pρ}(x0,Ξ0,Λ0) ≤ 0.

In particular, (4.26)–(4.28) contradict that (Σ, ρ) strongly pseudoconvex at x0.
Therefore, it remains only to consider the case Λ0 = 0, and to derive a contradiction in

this setting. Letting k ↗ ∞ in (4.25)—and recalling (4.22) and (4.23)—now yields

(4.29) p(x0,Ξ0) = 0.

Moreover, applying (4.12) (again with µ := k) to (4.24) yields, for some C ′ > 0,

C∗k
−1λk|ζk|2m−2 ≥ C†k |ζk|−1|p(xk, ζk)|2 + kλk |∇ξp(xk, ζk) · ∇ρ(x0)|2(4.30)

− 1
2
λk Re{p̄, {p, ρ}}(x0, ξk)− C ′k−1λk|ζk|2m−2 − C ′λ2k|ζk|2m−3,

Dividing (4.30) by kλk|ζk|2m−2, we then obtain

C∗k
−2 ≥ |∇ξp(xk, Zk) · ∇ρ(x0)|2 − 1

2
k−1Re{p̄, {p, ρ}}(xk,Ξk)− C ′k−2 − C ′Λkk

−1.

Letting k ↗ ∞ in the above, applying (4.22) and (4.23), and recalling that Λ0 = 0 yields

(4.31) |∇ξp(x0,Ξ0) · ∇ρ(x0)|2 = 0, {p, ρ}(x0,Ξ0) = 0.

We now discard the first two terms on the right-hand side of (4.30) and divide by λk|ζk|2m−2:

C∗k
−1 ≥ −1

2
Re{p̄, {p, ρ}}(xk,Ξk)− C ′k−1 − C ′Λk.

Letting k ↗ ∞ in the above and recalling that Λ0 = 0 results in the inequality

(4.32) −Re{p̄, {p, ρ}}(x0,Ξ0) ≤ 0.

Since Λ0 = 0, then (4.23) implies Ξ0 6= 0, hence (4.29), (4.31), and (4.32) again contradict
the assumption that (Σ, ρ) is strongly pseudoconvex at x0.

Thus, we have a contradiction for all possible cases, completing the proof of (4.17). �
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5. Second-Order Operators

In this section, we apply our theory to the special case of second-order operators with
purely real principal symbols. This includes both elliptic equations arising from Riemannian
metrics and wave equations arising from Lorentzian metrics.

5.1. Classification of Operators. We begin by defining our notations:

Remark 5.1. For convenience, we adopt Einstein summation notation—indices repeated in
superscript and subscript are understood to be summed over the values 1, . . . , n. Furthermore,
we use the standard shorthand ∂α to represent the derivative ∂xα.

Assumption 5.2. Let G denote the second-order linear partial differential operator

G := gαβ ∂α∂β + gα ∂α + g◦(5.1)

= −gαβDαDβ + i gαDα + g◦,

where the second-order coefficients satisfy

(5.2) gαβ ∈ C∞(Ω;R), gαβ = gβα, α, β ∈ {1, . . . , n},

and where the lower-order coefficients satisfy

gα, g◦ ∈ C∞(Ω;C), α ∈ {1, . . . , n}.

Furthermore, keeping with our conventions, we let g denote the principal symbol of G:

(5.3) g(x, ξ) = −gαβ(x) ξαξβ, (x, ξ) ∈ Ω× Rn.

Remark 5.3. The symmetry assumption in (5.2) does not result in any loss of generality;
one can always reduce to the symmetric case by replacing each gαβ by 1

2
(gαβ + gβα).

Remark 5.4. We can associate the principal coefficients gαβ with a (co-)metric g on Ω:

(5.4) g : Ω× Rn × Rn → R, g(x; ξ, ζ) = gαβ(x) ξαζβ.

In particular, observe that:
• If g is Riemannian, then G is a geometric Laplace-Beltrami operator.
• If g is Lorentzian, then G is a geometric wave operator.

Proposition 5.5. The following properties hold:
• G is elliptic at x0 if and only if g(x0, ·) is everywhere positive or everywhere negative.
• Σ is non-characteristic at x0 with respect to G if and only if

(5.5) (gαβ∂αρ∂βρ)(x0) 6= 0.

Proof. This follows immediately from Definition 2.9, Definition 2.10, and (5.3). �

Remark 5.6. Proposition 5.5 can also be reformulated using geometric language:
• G is elliptic at x0 if and only if +g or −g is Riemannian at x0.
• Σ is non-characteristic at x0 with respect to G if and only if Σ is not g-null at x0.
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Lemma 5.7. Let ξ ∈ Rn, and assume ξ is of the form

(5.6) ξ = ξ′ + a dρ(x0), a ∈ R, (gαβ∂αρ)(x0) ξ
′
β = 0.

Then, the polynomial

(5.7) fg,x0,ξ : C → C, fg,x0,ξ(σ) := g(x0, ξ + σ dρ(x0))

has simple, real roots if and only if

(5.8) (gαβ∂αρ∂βρ)(x0) · gµν(x0) ξ′µξ′ν < 0.

Proof. Using (5.3), (5.6), and (5.7), we expand, for any σ ∈ C,

fg,x0,ξ(σ) = −gαβ(x0)(ξα + σ ∂αρ(x0))(ξβ + σ ∂βρ(x0))

= −(gαβ∂αρ∂βρ)(x0) · σ2 − 2(gαβ∂αρ)(x0)ξβ · σ − gαβ(x0)ξαξβ

= −(gαβ∂αρ∂βρ)(x0) · σ2 − 2a(gαβ∂αρ∂βρ)(x0) · σ

− [gαβ(x0)ξ
′
αξ

′
β + a2(gαβ∂αρ∂βρ)(x0)].

Then, fg,x0,ξ has simple, real roots if and only if its discriminant is strictly positive:

0 < a2[(gαβ∂αρ∂βρ)(x0)]
2 − (gαβ∂αρ∂βρ)(x0)[g

αβ(x0)ξ
′
αξ

′
β + a2(gαβ∂αρ∂βρ)(x0)]

= −(gαβ∂αρ∂βρ)(x0) · gαβ(x0)ξ′αξ′β. �

Proposition 5.8. Σ is strictly hyperbolic at x0 with respect to G if and only if

(5.9) (gαβ∂αρ∂βρ)(x0) · gµν(x0) ξ′µξ′ν < 0

holds for any ξ′ ∈ Rn \ {0} satisfying

(5.10) (gαβ∂αρ)(x0) ξ
′
β = 0.

Proof. First, assume Σ is strictly hyperbolic at x0 with respect to G. If ξ′ ∈ Rn \{0} satisfies
(5.10), then ξ′ ∧ dρ(x0) 6= 0, since otherwise this implies

(gαβ∂αρ∂βρ)(x0) = 0,

which by Proposition 5.5 contradicts that Σ is non-characteristic at x0. By Definition 2.11,
the polynomial fg,x0,ξ′ (as defined in (5.7), with a := 0) has simple and real roots, and hence
the desired (5.9) follows immediately from Lemma 5.7.

Conversely, assume that (5.9) holds for all ξ′ ∈ Rn \ {0} satisfying (5.10). First, we claim
that (5.5) must hold. This is a consequence of the following:

• If there exists ξ′ ∈ Rn \ {0} such that (5.10) holds, then (5.5) follows from (5.9).
• Otherwise, if no such ξ′ ∈ Rn \ {0} exists, then (5.5) trivially holds.

In particular, Proposition 5.5 implies Σ is non-characteristic at x0 with respect to G.
Now, fix ξ ∈ Rn with ξ ∧ dρ(x0) 6= 0. Using (5.5), we obtain that ξ is of the form (5.6) for

some a ∈ R. Moreover, the condition ξ ∧ dρ(x0) 6= 0 implies ξ′ 6= 0, and hence (5.9) holds
with this ξ′. By Lemma 5.7, we conclude that the polynomial fg,x0,ξ (with the above ξ) must
have simple, real roots. This proves that Σ is strictly hyperbolic at x0. �
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Remark 5.9. Proposition 5.8 also has an equivalent geometric formulation. When n > 1,
we have that Σ is strictly hyperbolic at x0 with respect to G if and only if g is Lorentzian at
x0 (with either (−,+, . . . ,+) or (+,−, . . . ,−) signature) and Σ is g-spacelike at x0.

Remark 5.10. Furthermore, in the trivial case n = 1, we obtain from Proposition 5.8 that
Σ is strictly hyperbolic at x0 with respect to G if and only if g is non-degenerate at x0.

Finally, for φ ∈ C∞(Ω;R), we apply Definition 3.13 to G and g:

gφ(x, ξ, λ) = −gαβ[ξα − iλ ∂αφ(x)][ξβ − iλ ∂βφ(x)](5.11)

= −gαβ(x) ξαξβ + 2iλ (gαβ∂αφ)(x) ξβ + λ2 (gαβ∂αφ∂βφ)(x),

for any (x, ξ, λ) ∈ Ω× Rn × R. In particular, its real and imaginary parts are

Re gφ(x, ξ, λ) = −gαβ(x) ξαξβ + λ2 (gαβ∂αφ∂βφ)(x),(5.12)

Im gφ(x, ξ, λ) = 2λ (gαβ∂αφ)(x) ξβ.

5.2. Pseudoconvexity and Unique Continuation. We now study how the strong pseu-
doconvexity condition simplifies in the special case of our operator G. For this, we apply the
calculations in the previous section to the principal symbol g.

Definition 5.11. Given ψ ∈ C∞(Ω;C), we define the g-Hessian ∇gψ of ψ to be the matrix-
valued function on Ω whose components are given by

(∇2
gψ)

αβ = gαµgβν∂µ∂νψ + 1
2
(gαµ∂µg

βν + gβµ∂µg
αν − gµν∂µg

αβ)∂νψ.(5.13)

Remark 5.12. ∇2
gψ also has a geometric interpretation—when the corresponding metric g

is non-degenerate, ∇2
gψ is precisely the (dual of the) Levi-Civita g-covariant Hessian of g.

Proposition 5.13. The following hold for any φ ∈ C∞(Ω;R), ξ ∈ Rn, and λ ∈ (0,∞):

{g, φ}(x0, ξ) = −2(gαβ∂αφ)(x0) ξβ(5.14)
−Re{ḡ, {g, φ}}(x0, ξ) = −4 ξ · ∇2

gφ(x0) · ξ,
−i{gφ, gφ}(x0, ξ, λ) = −4λ ξ · ∇2

gφ(x0) · ξ − 4λ3∇φ(x0) · ∇2
gφ(x0) · ∇φ(x0).

Proof. First, note that direct computations using (5.11) yield that

∂ξαg(x0, ξ) = −2gαβ(x0) ξβ, ∂xαg(x0, ξ) = −∂αgµν(x0) ξµξν ,(5.15)

∂ξα∂xβg(x0, ξ) = −2∂xβg
αµ(x0) ξµ, ∂ξα∂ξβg(x0, ξ) = −2gαβ(x0).

The first part of (5.14) now follows from the above and Definition 3.7.
Next, for the second part of (5.14), we first apply (5.15) to obtain

(5.16) −∇ξḡ(x0, ξ) · ∇2φ(x0) · ∇ξg(x0, ξ) = −4gαµgβν∂µ∂νφ(x0) ξαξβ.

Additional direct computations using (5.15) yield

−Re ∂2xαξβg(x0, ξ)∂ξα ḡ(x0, ξ)∂xβφ(x0) = −4(gαν∂αg
βµ ∂βφ)(x0) ξµξν ,(5.17)

Re ∂2ξαξβg(x0, ξ)∂xα ḡ(x0, ξ)∂xβφ(x0) = 2 (gαβ∂αg
µν∂βφ)(x0) ξµξν .



22 ARICK SHAO

Combining the first part of (4.7), (5.16), and (5.17) results in second part of (5.14) (after
some additional algebraic manipulations and reshuffling of repeated indices).

Finally, for the last part of (5.14), we begin by applying (5.15) to compute

Im[∇ξḡ(x0, ξ − iλ dφ(x0)) · ∇xg(x0, ξ − iλ dφ(x0))](5.18)

= 2 Im[(gαβ∂αg
µν)(x0) (ξβ + iλ ∂βφ(x0))(ξµ − iλ ∂µφ(x0))(ξν − iλ ∂νφ(x0))]

= 2λ (gαβ∂αg
µν)(x0) [∂βφ(x0) ξµξν − 2∂µφ(x0) ξβξν ]

− 2λ3 (gαβ∂αg
µν ∂βφ∂µφ∂νφ)(x0).

Similarly, using that ∇2 is symmetric, we can expand

− λ∇ξḡ(x0, ξ − iλ dφ(x0)) · ∇2φ(x0) · ∇ξg(x0, ξ − iλ dφ(x0))(5.19)

= −4λ (gαβgµν ∂αµφ)(x0) (ξβ + iλ ∂βφ(x0), ξν − iλ ∂νφ(x0))

= −4λ (gαβgµν ∂αµφ)(x0) ξβξν − 4λ3 (gαβgµν ∂αµφ∂βφ∂νφ)(x0).

Combining the second part of (4.7), (5.18), and (5.19) yields the last part of (5.14). �

The upshot of our computations is summarized in the following proposition, which shows
that for G, strong pseudoconvexity is equivalent to pseudoconvexity. Therefore, the crucial
criterion for unique continuation can be simplified considerably for wave equations.

Proposition 5.14. The following conditions are equivalent:
• (Σ, ρ) is strongly pseudoconvex at x0 with respect to G.
• (Σ, ρ) is pseudoconvex at x0 with respect to G.
• Given any ξ ∈ Rn \ {0}, if

(5.20) gαβ(x0) ξαξβ = 0, (gαβ∂αρ)(x0) ξβ = 0,

then the following inequality also holds:

(5.21) −ξ · ∇2
gρ(x0) · ξ > 0.

Proof. That the second and third statements are equivalent follows from Definition 4.1 and
Proposition 5.13. By Definition 4.2, it suffices to show the second statement implies the first.
Suppose now that (Σ, ρ) is pseudoconvex at x0 with respect to G. Then, it suffices to show
that if (4.3) holds (with p := g) for some ξ ∈ Rn and λ > 0, then so must (4.4).

First, let us suppose ξ 6= 0. Note that (4.3) can be equivalently rewritten as

(5.22) g(x0, ξ − iλ dρ(x0)) = 0, ∂τ [g(x0, ξ − iτ dρ(x0))]|τ=λ = 0.

This implies iλ is a double root of the polynomial fg,x0,ξ defined in (5.7) (with our present
ξ). However, since g is real-valued, then −iλ must also be a double root of this polynomial,
which yields a contradiction. As a result, (4.3) cannot hold whenever ξ 6= 0.

Next, suppose instead that ξ = 0. Then, (5.11) and the first part of (5.14) imply that the
condition (4.3), in the case ξ = 0, is equivalent to

(5.23) g(x0, dρ(x0)) = 0, {g, ρ}(x0, dρ(x0)) = 0.



CARLEMAN ESTIMATES AND LOCAL UNIQUE CONTINUATION 23

Since (Σ, ρ) is pseudoconvex at x0, then Definition 4.1 and the second part of (5.14) yield

−dρ(x0) · ∇2
gρ(x0) · dρ(x0) > 0.

Moreover, by the last part of (5.14), the above is precisely the condition (4.4):

−i{gρ, gρ}(x0, 0, λ) > 0, {Re gρ, Im gρ}(x0, 0, λ) > 0.

Finally, combining both cases above completes the proof of strong pseudoconvexity. �

Corollary 5.15. If G is elliptic at x0, then:
• (Σ, ρ) is pseudoconvex at x0 with respect to G.
• (Σ, ρ) is strongly pseudoconvex at x0 with respect to G.

Proof. By Proposition 5.14, it suffices to show that (Σ, ρ) is pseudoconvex at x0. However,
g being elliptic immediately implies that (4.1) (with g in the place of p) cannot hold. �

Remark 5.16. Pseudoconvexity also has a geometric interpretation. The conditions (5.20)
can be reformulated as ξ being g-null and ξ being (g-)cotangent to Σ, respectively. Therefore,
(Σ, ρ) being (strongly) pseudoconvex at x0 can be geometrically characterised as (5.21) holding
for every g-null covector ξ ∈ Rn \ {0} that is (g-)cotangent to Σ.

Corollary 5.17. Suppose that (Σ, ρ) is pseudoconvex at x0 with respect to G. Then, (G,Σ, ρ)
has the local unique continuation property at x0.

Proof. Since g is real-valued, and since Proposition 5.14 yields that (Σ, ρ) is strongly pseu-
doconvex at x0, the conclusion then follows immediately from Theorem 4.11. �
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Appendix A. Microlocal Analysis

In this appendix, we provide self-contained proofs of the key microlocal analysis results
from the main sections—in particular, Proposition 3.6, Proposition 3.10, and Theorem 3.11.
To keep the discussion as concise as possible, we try to cover only the material needed for
the above results, and we leave more systematic expositions to other sources.

Remark A.1. Some of the material below is an adaptation of parts of Peter Hintz’s lecture
notes [1] to a wider class of λ-parametrized symbols. The proof of the sharp Gårding inequality
given here is a special case adapted from the paper [4] of Nagase.

A.1. Generalized Symbols. In order to prove the above-mentioned results, we first need
to further expand our class of λ-parametrized symbols. The first extension is to generalize
our symbols to allow for more flexible derivative estimates:

Definition A.2. For convenience, we adapt the following shorthand from (3.6):

(A.1) γ : Rn × (0,∞) → R, γ(ξ, λ) := (λ2 + |ξ|2)
1
2 .

Definition A.3. Given s ∈ R and δ ∈ [0, 1), we let Λsδ(Rn) denote the space of all symbols

b ∈ C∞(Rn × Rn × (0,∞);C)

satisfying that for any multi-indices I, J , there exists C > 0 such that

(A.2) |∇x,I∇ξ,Jb(x, ξ, λ)| ≤ Cγ(ξ, λ)s−|J |+δ|I|

for any (x, ξ, λ) ∈ Rn × Rn × [1,∞).

Remark A.4. Note that Λs0(Rn) coincides with Λs(Rn) from Definition 3.1.

There are multiple ways to associate our symbols with pseudodifferential operators:

Definition A.5. Given s ∈ R, δ ∈ [0, 1), b ∈ Λsδ(Rn), and λ ∈ [1,∞):
• The left quantization opLλ(b) of b is defined, for any ψ ∈ C∞

0 (Rn;C), by

(A.3) opLλ(b)ψ(x) :=
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξb(x, ξ, λ)ψ(y) dydξ, x ∈ Rn.

• The right quantization opRλ (b) of b is defined, for any ψ ∈ C∞
0 (Rn;C), by

(A.4) opRλ (b)ψ(x) :=
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξb(y, ξ, λ)ψ(y) dydξ, x ∈ Rn.

Remark A.6. Observe that if b ∈ Λs0(Rn), then the left quantization opLλ(b) coincides with
opλ(b) from Definition 3.3 due to the Fourier inversion theorem.

It will be useful to unify left and right quantizations in our upcoming analysis. For this,
we also consider a larger class of symbols depending on two spatial variables:

Definition A.7. Given s ∈ R and δ ∈ [0, 1), we let Λ̄sδ(Rn) denote the set of all

b ∈ C∞(Rn × Rn × Rn × (0,∞);C)
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such that for any multi-indices I, J,K, there exists C > 0 such that

(A.5) |∇x,I∇y,J∇ξ,Kb(x, y, ξ, λ)| ≤ Cγ(ξ, λ)s−|K|+δ(|I|+|J |)

for any (x, y, ξ, λ) ∈ Rn × Rn × Rn × [1,∞).

Remark A.8. As a convention, we will generally refer to the first and second arguments of
any symbol b ∈ Λ̄sδ(Rn) as the “x” and “y” components, respectively.

Definition A.9. Given s ∈ R, δ ∈ [0, 1), b ∈ Λ̄sδ(Rn), and λ ∈ [1,∞), we define the operator
Opλ(b) such that it maps any ψ ∈ C∞

0 (Rn;C) to the function given by

(A.6) Opλ(b)ψ(x) :=
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξb(x, y, ξ, λ)ψ(y) dydξ, x ∈ Rn.

Remark A.10. Observe that if b in Definition A.9 is independent of y, then Opλ(b) reduces
to the left quantization opLλ(b). On the other hand, if b in Definition A.9 is independent of
x, then Opλ(b) reduces to the right quantization opRλ (b).

Observe that all the above quantizations indeed yield well-defined functions:

Proposition A.11. Fix s ∈ R, δ ∈ [0, 1), and b ∈ Λ̄sδ(Rn). Then, Opλ(b)ψ is a well-defined
complex-valued function on Rn for any ψ ∈ C∞

0 (Rn;C) and λ ∈ [1,∞).

Proof. Since ψ is compactly supported, then recalling the identity

(1 + |ξ|2)−N(1−∆y)
Nei(x−y)·ξ = ei(x−y)·ξ

and integrating the right-hand side of (A.6) by parts in y, we obtain, for any x ∈ Rn,∣∣∣∣∫
Rn

∫
Rn

ei(x−y)·ξb(x, y, ξ, λ)ψ(y) dydξ

∣∣∣∣ ≤ ∫
Rn

∫
Rn

|(1−∆y)N [b(x,y,ξ,λ)ψ(y)]|
(1+|ξ|2)N dydξ

≤ C ′
∫
Rn

γ(ξ,λ)s+2δN

γ(ξ,1)2N
dξ

∑
|I|≤2N

∫
Rn

|∇Iψ(y)| dy,

for some constant C ′, where in the last step, we recalled the bounds (A.5) for b.
The integral in y on the right-hand side is finite since ψ has compact support. Since δ < 1,

the integral in ξ is also finite as long asN is taken sufficiently large so that s−2(1−δ)N < −n.
Thus, by (A.6), it follows that opλ(b)ψ(x) is well-defined for each x ∈ Rn. �

Finally, we briefly touch upon the subclass of “infinitely regularizing” operators:

Definition A.12. Given δ ∈ [0, 1), a family of operators (Aλ)λ∈[1,∞) mapping C∞
0 (Rn;C) to

complex-valued functions on Rn is δ-residual iff for any s ∈ R, there exists b ∈ Λ̄sδ(Rn) with

(A.7) Aλ = Opλ(b), λ ∈ [1,∞).

Proposition A.13. Let δ ∈ [0, 1), and let (Aλ)λ∈[1,∞) be a δ-residual family of operators.
Then, for each λ ∈ [1,∞), there exists Kλ ∈ C∞(Rn × Rn;C) such that

(A.8) Aλψ(x) =

∫
Rn

Kλ(x, y)ψ(y) dy, ψ ∈ C∞
0 (Rn;C), (x, λ) ∈ Rn × [1,∞).
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In addition, given any integer M ≥ 0 and multi-indices I, J , there exists C > 0 such that

(A.9) |∇x,I∇y,JKλ(x, y)| ≤ C(λ2 + |x− y|2)−M , (x, y, λ) ∈ Rn × Rn × [1,∞).

Proof. Given any s ∈ (−∞,−n) and b ∈ Λ̄sδ(Rn) for which (A.8) holds, the function

(A.10) Kλ(x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξb(x, y, ξ, λ) dξ, x, y ∈ Rn,

is both well-defined and, by (A.6), satisfies (A.8). Moreover, the identity (A.8) implies that
the functions Kλ, λ ∈ [1,∞), in (A.10) are independent of the choice of s and b.

Letting s < −n− |I| − |J | − 2M and b be as before, then for λ ∈ [1,∞), we have

∇x,I∇y,JKλ(x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξbI,J(x, y, ξ, λ) dξ,(A.11)

bI,J(x, y, ξ, λ) =
∑

I′+I′′=I

∑
J ′+J ′′=J

(iξ)I′(−iξ)J ′∇x,I′′∇y,J ′′b(x, y, ξ, λ).

(Note the integral in (A.11) is well-defined by (A.5) and our condition on s, which implies
bI,J ∈ Λ̄s

′

δ (Rn) for some s′ < −n− 2M .) Now, we again recall (A.5) and integrate (A.11) by
parts to obtain, for any x, y ∈ Rn, any λ ∈ [1,∞), as well as for some constant C > 0,

|∇x,I∇y,JKλ(x, y)| =
1

(2π)n

∣∣∣∣∫
Rn

(λ2−∆ξ)
Mei(x−y)·ξ

(λ2+|x−y|2)M bI,J(x, y, ξ, λ) dξ

∣∣∣∣
≤ 1

(2π)n

∫
Rn

(λ2 + |x− y|2)−M |(λ2 −∆ξ)
MbI,J(x, y, ξ, λ)| dξ

≤ C(λ2 + |x− y|2)−M . �

Remark A.14. The function Kλ from (A.8) is called the Schwartz kernel associated to the
operator Aλ. Most crucially, note the constants C in (A.9) are independent of λ.

A.2. Symbol Reductions. Although Definition A.7 expanded our symbol class, below we
show that his has not actually enlarged our class of pseudodifferential operators—that is,
our extended symbols produce the same operators as before.

Lemma A.15. Let δ ∈ [0, 1), and let (Aλ)λ∈[1,∞) be a δ-residual family of operators. Then
there exist rL, rR ∈

⋂
s∈R Λ

s
δ(Rn) such that the following hold:

(A.12) Aλ = opLλ(rL) = opRλ (rR), λ ∈ [1,∞).

Proof. Throughout the proof, we let C ′ denote various positive constants whose values can
change between lines but must remain independent of the parameter λ. Also, let (Kλ)λ∈[1,∞)

denote the Schwartz kernels associated with the family (Aλ)λ∈[1,∞), as in Proposition A.13.
We now define rL, rR : Rn × Rn × (0,∞) → C to satisfy, for λ ∈ [1,∞),

rL(x, ξ, λ) :=

∫
Rn

e−iz·ξKλ(x, x− z) dz,(A.13)

rR(y, ξ, λ) :=

∫
Rn

e−iz·ξKλ(y + z, y) dz.
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Now, for any multi-indices I, J and (x, ξ, λ) ∈ Rn × Rn × [1,∞), we can write

∇x,I∇ξ,JrL(x, ξ, λ) =
1

(2π)n

∫
Rn

e−iz·ξKI,J(x, z, λ) dz,(A.14)

KI,J(x, z, λ) = (−iz)J
∑

I′+I′′=I

∇x,I′∇y,I′′Kλ(x, x− z).

(Note the above is justified, as the integral in (A.14) is absolutely convergent by (A.9).) By
the same integration by parts trick as in the proof of Proposition A.13, we then bound

|∇x,I∇ξ,JrL(x, ξ, λ)| ≤ C ′(λ2 + |ξ|2)−M
∫
Rn

|(λ2 +∆z)
MKI,J(x, z, λ)| dz

≤ C ′(λ2 + |ξ|2)−M ,

for any M ≥ n, where in the last step, we used (A.14) along with the infinite-order decay
from (A.9). In particular, this implies rL ∈ Λsδ(Rn) for every s ∈ R; an analogous process
starting from the second identity in (A.13) yields rR ∈ Λs(Rn) for all s ∈ R.

Finally, a direct computation yields, for any ψ ∈ C∞
0 (Rn;C) and x ∈ Rn,

opLλ(rL)ψ(x) =
1

(2π)n

∫
Rn

∫
Rn

∫
Rn

ei(x−y)·ξe−iz·ξKλ(x, x− z)ψ(y) dξdydz

=

∫
Rn

F−1[Kλ(x, ·)](ξ)F [ψ](ξ) dξ,

where F and F−1 denote the Fourier and inverse Fourier transforms, respectively. Using the
adjoint properties of F and the Fourier inversion formula, we have, from (A.8),

opLλ(rL)ψ(x) =

∫
Rn

Kλ(x, y)ψ(y) dy

= Aλψ(x).

To complete the proof of (A.12), we apply a similar computation using (A.4):

opRλ (rR)ψ(x) =
1

(2π)n

∫
Rn

∫
Rn

∫
Rn

ei(x−y)·ξe−iz·ξKλ(y + z, y)ψ(y) dξdydz

=
1

(2π)n

∫
Rn

∫
Rn

eix·ξF [Kλ(·, y)](ξ)ψ(y) dξdy

=

∫
Rn

Kλ(x, y)ψ(y) dξ

= Aλψ(x). �

Proposition A.16. Given s ∈ R, δ ∈ [0, 1), and b ∈ Λ̄sδ(Rn), there exist bL, bR ∈ Λsδ(Rn)

such that the following identities hold for all λ ∈ [1,∞):

(A.15) Opλ(b) = opLλ(bL) = opRλ (bR), λ ∈ [1,∞).

Moreover, there exist bL,r, bR,r ∈ Λ
s−2(1−δ)
δ (Rn) such that for any x, y, ξ ∈ Rn and λ ∈ [1,∞),

bL(x, ξ, λ) = b(x, x, ξ, λ)− i(∇ξ · ∇yb)(x, x, ξ, λ) + bL,r(x, ξ, λ),(A.16)



28 ARICK SHAO

bR(y, ξ, λ) = b(y, y, ξ, λ) + i(∇ξ · ∇xb)(y, y, ξ, λ) + bR,r(y, ξ, λ).

Proof. First, by Taylor’s theorem, we can write

b(x, y, ξ, λ) =
∑
|I|<N

(y−x)I∇y,Ib(x,x,ξ,λ)

k!
+

∑
|I|=N

(y−x)I
∫ 1
0 ∇y,Ib(x,(1−t)x+ty,ξ,λ) (1−t)N−1 dt

(N−1)!
,(A.17)

b(x, y, ξ, λ) =
∑
|I|<N

(x−y)I∇x,Ib(y,y,ξ,λ)

k!
+

∑
|I|=N

(x−y)I
∫ 1
0 ∇x,Ib(tx+(1−t)y,y,ξ,λ) (1−t)N−1 dt

(N−1)!
.

for any x, y, ξ ∈ Rn, λ ∈ [1,∞), and N ∈ N. Recalling (A.6), noting that

(x− y)ei(x−y)·ξ = −i∇ξe
i (x−y)·ξ

and integrating by parts, we obtain, for any x, λ as above and ψ ∈ C∞
0 (Rn;C),

Opλ(b)ψ(x) =
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξ

[∑
k<N

bL,k(x, ξ, λ) + rL,N(x, y, ξ, λ)

]
ψ(y) dydξ,(A.18)

Opλ(b)ψ(x) =
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξ

[∑
k<N

bR,k(y, ξ, λ) + rR,N(x, y, ξ, λ)

]
ψ(y) dydξ,

where we have, for each N ∈ N and 0 ≤ k < N ,

bL,k =
1
k!
(−i)k(∇ξ · ∇y)

kb(x, x, ξ, λ) ∈ Λ
s−k(1−δ)
δ (Rn),(A.19)

bR,k =
1
k!
(+i)k(∇ξ · ∇x)

kb(y, y, ξ, λ) ∈ Λ
s−k(1−δ)
δ (Rn),

rL,N = (−i)N
(N−1)!

∫ 1

0

(∇ξ · ∇y)
Nb(x, (1− t)x+ ty, ξ, λ) (1− t)N−1 dt ∈ Λ̄

s−N(1−δ)
δ (Rn),

rR,N = (+i)N

(N−1)!

∫ 1

0

(∇ξ · ∇x)
Nb(tx+ (1− t)y, y, ξ, λ) (1− t)N−1 dt ∈ Λ̄

s−N(1−δ)
δ (Rn).

We now define bL,∗ : Rn × Rn × (0,∞) → C and rL,∗ : Rn × Rn × Rn × (0,∞) → C by

bL,∗(x, ξ, λ) :=
∞∑
k=0

χ(εkξ)bL,k(x, ξ, λ),(A.20)

rL,∗(x, y, ξ, λ) := b(x, y, ξ, λ)− bL,∗(x, ξ, λ),

where χ ∈ C∞(Rn; [0, 1]) is chosen to satisfy

(A.21) χ|{ξ∈Rn||ξ|≤1} ≡ 0, χ|{ξ∈Rn||ξ|≥2} ≡ 1,

and where the decreasing sequence (εk)k≥0 is chosen to converge to zero fast enough so that

(A.22)
∑

|I|+|J |≤k

|∇x,I∇ξ,JbL,k(x, ξ, λ)| ≤ 2−kγ(ξ, λ)s−|J |+δ|I|+1, k ≥ 0, |ξ| ≥ ε−1
k .

In particular, the sum in (A.20) converges, since it is finite at each ξ ∈ Rn. Moreover,

(A.23)
∞∑
k=N

χ(εkξ)bL,k(x, ξ, λ) ∈ Λ
s−N(1−δ)+1
δ (Rn), N > 0,
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since (A.22) also implies all derivatives of the sum in (A.20) converge uniformly. (In fact,
the quantity in (A.23) also lies in Λ

s−N(1−δ)
δ (Rn); this can be seen by applying (A.23) with

N replaced by N ′ � N and noting that each bL,k itself lies in Λ
s−k(1−δ)
δ (Rn).)

As a result of (A.18)–(A.20) and (A.23), we can write, for each N > 0 and λ ∈ [1,∞),

Opλ(rL,∗) = Opλ(rL,N) + opLλ(r
1
L,N) + opLλ(r

2
L,N),(A.24)

r1L,N(x, ξ, λ) =
∑
k<N

[1− χ(εkξ)]bL,k(x, ξ, λ),

r2L,N(x, ξ, λ) =
∑
k≥N

χ(εkξ)bL,k(x, ξ, λ).

Note r1L,N ∈
⋂
t∈R Λ

t
δ(Rn), since it is uniformly compactly supported in ξ. Thus, by (A.19)

and (A.23), we have rL,∗ ∈ Λ̄
s−N(1−δ)
δ (Rn) for all N > 0, hence (Opλ(rL,∗))λ∈[1,∞) is a δ-

residual family of operators. Thus, Lemma A.15 yields an rL ∈
⋂
t∈R Λ

t
δ(Rn) with

Opλ(rL,∗) = opLλ(rL), λ ∈ [1,∞),

and hence it follows that
bL := bL,∗ + rL,∗ ∈ Λsδ(Rn)

satisfies the first part of (A.15); an analogous process also yields bR ∈ Λsδ(Rn).
Finally, the identities (A.16) follow by expanding (A.18) for large enough N and recalling

(A.23) (for bL) and its analogue for right quantification. �

Remark A.17. Note the expansions (A.16) can be taken to higher orders as in (A.18) and
(A.19). However, we will not require such formulas in these notes.

A.3. Operator Properties. The aim of this subsection to prove generalizations of Propo-
sitions 3.6 and 3.10, which were left untreated in earlier sections. In particular, Propositions
3.6 and 3.10 will follow immediately from the following two results:

Proposition A.18. Let s, s1, s2 ∈ R and δ ∈ [0, 1). Then:
• Given b1 ∈ Λs1δ (Rn) and b2 ∈ Λs2δ (Rn), there exists r ∈ Λ

s1+s2−2(1−δ)
δ (Rn) such that

(A.25) opLλ(b1) op
L
λ(b2) = opLλ(b1b2 − i∇ξb1 · ∇xb2 + r), λ ∈ [1,∞).

• Given b1 ∈ Λs1δ (Rn) and b2 ∈ Λs2δ (Rn), there exists r ∈ Λ
s1+s2−2(1−δ)
δ (Rn) such that

(A.26) [opLλ(b1), op
L
λ(b2)] = opLλ(−i{b1, b2}+ r), λ ∈ [1,∞).

• Given b ∈ Λsδ(Rn), there exists r ∈ Λ
s−(1−δ)
δ (Rn) such that

(A.27) opLλ(b)
∗ = opLλ(b̄+ r), λ ∈ [1,∞).

Proof. We fix λ ∈ [1,∞) throughout the proof. Given ψ, ϕ ∈ C∞
0 (Rn;C), we have

〈ψ, opLλ(b)ϕ〉L2(Rn) =
1

(2π)n

∫
Rn

∫
Rn

∫
Rn

ψ(x)ei(x−y)·ξb(x, ξ, λ)ϕ(y) dξdydx

=
1

(2π)n

∫
Rn

∫
Rn

∫
Rn

ei(x−y)·ξb(y, ξ, λ)ψ(y)ϕ(x) dξdydx,
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and it hence follows that
opLλ(b)

∗ = opRλ (b̄).
Viewing b̄ in the above as an x-independent element of Λ̄sδ(Rn), then by Proposition A.16,

opLλ(b)
∗ = opLλ(b̄− i∇ξ · ∇xb̄+ r′)

for some r′ ∈ Λ
s−2(1−δ)
δ (Rn), which in particular proves (A.27).

Next, for (A.25), by Proposition A.16, there exists b2,r ∈ Λs2δ (Rn) such that

(A.28) opLλ(b2) = opRλ (b2,r), b2,r = b2 + i(∇ξ · ∇xb2) + r2, r2 ∈ Λ
s2−2(1−δ)
δ (Rn).

(For the expansion in (A.28), we viewed b2 as a y-independent element of Λ̄s2δ (Rn) and applied
(A.16).) By (A.3) and (A.4), we have, for any ψ ∈ C∞

0 (Rn;C) and x ∈ Rn,

opLλ(b1) op
L
λ(b2)ψ(x) =

1

(2π)n

∫
Rn

eix·ξb1(x, ξ, λ)F [opRλ (b2,r)ψ](ξ) dξ(A.29)

=
1

(2π)n

∫
Rn

ei x·ξb1(x, ξ, λ)

∫
Rn

e−i y·ξb2,r(y, ξ, λ)ψ(y) dy dξ

= Opλ(b3),

where b3 ∈ Λ̄s1+s2δ (Rn) is given by

b3(x, y, ξ, λ) = b1(x, ξ, λ)b2,r(y, ξ, λ)

= b1(x, ξ, λ)(b2 + i∇ξ · ∇xb2 + r2)(y, ξ, λ).

Applying Proposition A.16 to b3 above, we see there exists b4 ∈ Λs1+s2δ (Rn) with

Opλ(b3) = opLλ(b4),(A.30)
b4(x, ξ, λ) = b3(x, x, ξ, λ)− i(∇ξ · ∇yb3)(x, x, ξ, λ) + r4(x, ξ, λ)

= b1(x, ξ, λ)b2(x, ξ, λ)− i∇ξb1(x, ξ, λ) · ∇xb2(x, ξ, λ)

− i∇ξ · [b1∇x(i∇ξ · ∇xb2 + r2)](x, ξ, λ) + r4(x, ξ, λ),

for any x, ξ ∈ Rn, and for some r4 ∈ Λ
s1+s2−2(1−δ)
δ (Rn). In particular, (A.30) implies

b4 = b1b2 − i∇ξb1 · ∇xb2 + r0, r0 ∈ Λ
s1+s2−2(1−δ)
δ (Rn).

Combining (A.29)–(A.30) and the above results in (A.25).
Finally, (A.26) follows immediately by noting that

[opLλ(b1), op
L
λ(b2)] = opLλ(b1) op

L
λ(b2)− opLλ(b2) op

L
λ(b1),

and by then applying (A.25) twice. �

Corollary A.19. Let s, s1, s2 ∈ R and δ ∈ [0, 1). Moreover, let b ∈ Λ̄sδ(Rn), b1 ∈ Λ̄s1δ (Rn),
b2 ∈ Λ̄s2δ (Rn). Then, there exist bc ∈ Λ̄s1+s2δ (Rn) and b∗ ∈ Λ̄sδ(Rn) such that

(A.31) Opλ(b1)Opλ(b2) = Opλ(bc), Opλ(b)
∗ = Opλ(b∗), λ ∈ [1,∞).

Proof. This is a direct consequence of Propositions A.16 and A.18. �
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Proposition A.20. Let s ∈ R, δ ∈ [0, 1), and b ∈ Λ̄sδ(Rn). Then, there exists C > 0 with

(A.32) ‖Opλ(b)ψ‖L2(Rn) ≤ C‖ψ‖Hs
λ(Rn), ψ ∈ C∞

0 (Rn;C), λ ∈ [1,∞).

Similarly, there exists C > 0 such that

(A.33) 〈Opλ(b)ψ, ψ〉L2(Rn) ≤ C‖ψ‖
H

s
2
λ (Rn)

, ψ ∈ C∞
0 (Rn;C), λ ∈ [1,∞).

Proof. First, we claim that if s < −n, then

(A.34) ‖Opλ(b)ψ‖L2(Rn) ≤ C‖ψ‖L2(Rn), ψ ∈ C∞
0 (Rn;C), λ ∈ [1,∞).

To prove this, we define Kλ by the formula (A.10), with b as in the proposition statement.
Using this, we then apply a direct computation to obtain, for any ϕ ∈ C∞

0 (Rn;C),

|〈Opλ(b)ψ, ϕ〉L2(Rn)|2 =
1

(2π)2n

∣∣∣∣∫
Rn

∫
Rn

Kλ(x, y)ψ(y)ϕ(x) dydx

∣∣∣∣2
≤ C ′

∫
Rn

∫
Rn

|Kλ(x, y)||ψ(y)|2 dydx
∫
Rn

∫
Rn

|Kλ(x, y)||ϕ(x)|2 dydx

≤ C ′‖ψ‖L2(Rn)‖ϕ‖L2(Rn),

for some constants C ′ > 0 (which can change between lines) that are independent of λ. To
obtain the last step above, we follow the proof of Proposition A.13 to again derive

|Kλ(x, y)| ≤ C ′(1 + |x− y|2)−M , x, y ∈ Rn, M ≥ 0,

for C ′ > 0 as above. This proves of the claim (A.34) for s < −n.
Next, we claim that (A.34) holds for any s ≤ −(1− δ). For this, note that if s < −n

2
, then

(A.35) ‖Opλ(b)ψ‖2L2(Rn) = 〈Opλ(b)
∗Opλ(b)ψ, ψ〉L2(Rn).

Moreover, by Corollary A.19, we see that

Opλ(b)
∗Opλ(b)ψ = Opλ(b2), b2 ∈ Λ̄2s

δ (Rn).

Thus, (A.34) follows from the previous claim and (A.35), since 2s < −n. Lastly, for general
s ≤ −(1 − δ), we iterate the above process a fixed number of times (noting that each such
iteration doubles the values of s allowed) to again derive (A.34).

We now claim that (A.34) holds when s = 0. In this case, (A.2) implies that b is uniformly
bounded, in particular over all λ ∈ [1,∞). As a result, we fix a constant

(A.36) C > sup
(x,y,ξ,λ)∈Rn×Rn×Rn×[1,∞)

|b(x, ξ, λ)|2,

and we define the quantities (for each λ ∈ [1,∞) in the latter case)

(A.37) b0 :=
√

C − |b|2 ∈ Λ̄0
δ(Rn), Rλ := C −Opλ(b)

∗Opλ(b)−Opλ(b0)
∗Opλ(b0).

Proposition A.18 and Corollary A.19 together yield some r ∈ Λ̄
−(1−δ)
δ (Rn) with

Rλ = Opλ(C − |b|2 − b20 + r)(A.38)
= Opλ(r),
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for every λ ∈ [1,∞). Finally, applying (A.37), (A.38), and the preceding claim, we obtain

‖Opλ(b)ψ‖2L2(Rn) = 〈Opλ(b)
∗Opλ(b)ψ, ψ〉L2(Rn)

= C〈ψ, ψ〉L2(Rn) − 〈Opλ(b0)ψ,Opλ(b0)ψ〉L2(Rn) − 〈Opλ(r)ψ, ψ〉L2(Rn)

≤ C‖ψ‖2L2(Rn) + ‖Opλ(r)ψ‖L2(Rn)‖ψ‖L2(Rn).

Our desired claim now follows from the above and the preceding claim for s ≤ −(1− δ).
In particular, the above claim yields (A.32) for s = 0. To prove (A.32) for general s ∈ R,

we note, using (3.7) and Corollary A.19, that

Opλ(b)(λ
2 −∆)−

s
2 = Opλ(b0),

for some b0 ∈ Λ̄0
δ(Rn). Thus, applying the already established s = 0 case yields

‖Opλ(b)ψ‖L2(Rn) ≤ C‖Opλ(b0)(λ
2 −∆)

s
2ψ‖L2(Rn)

≤ C‖ψ‖Hs
λ(Rn),

which completes the proof of (A.32). Similarly, for (A.33), we bound

〈Opλ(b)ψ, ψ〉L2(Rn) = ‖(λ2 −∆)−
s
4 Opλ(b)ψ‖L2(Rn)‖(λ2 −∆)

s
4ψ‖L2(Rn)

≤ ‖ψ‖2
H

s
2
λ (Rn)

,

where we applied (A.32) in the final step. �

A.4. The Sharp Gårding Inequality. The final task of the appendix is to prove the sharp
Gårding inequality of Theorem 3.11, which we now recall in our current language:

Theorem A.21. Let s ∈ R and λ0 ≥ 1, and suppose b ∈ Λs0(Rn) satisfies

(A.39) b(x, ξ, λ) ≥ 0, (x, ξ, λ) ∈ Rn × Rn × [λ0,∞).

Then, there exists C > 0 such that for any λ ≥ λ0 and ψ ∈ C∞
0 (Rn;C),

(A.40) Re〈opLλ(b)ψ, ψ〉L2(Rn) ≥ −C‖ψ‖2
H

s−1
2

λ (Rn)
.

Proof. Let ψ and λ be as in the theorem statement. First, by (A.27), we have

2Re〈opLλ(i Im b)ψ, ψ〉L2(Rn) = Re〈[opLλ(i Im b) + opLλ(i Im b)∗]ψ, ψ〉L2(Rn)

= Re〈opLλ(r)ψ, ψ〉L2(Rn),

for some r ∈ Λs−1
0 (Rn). Thus, applying (A.33) results in the inequality

Re〈opλ(i Im b)ψ, ψ〉L2(Rn) ≥ −C‖ψ‖2
H

s−1
2

λ (Rn)
,

with the constant independent of λ. Therefore, in the remainder of the proof, it suffices to
write b in place of Re b, that is, to assume b is purely real-valued.

Fix now a real-valued function φ ∈ C∞
0 (Rn;R) satisfying

(A.41) ‖φ‖L2(Rn) = 1, φ(−x) = φ(x), x ∈ Rn.
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We now define b? ∈ C∞(Rn × Rn × Rn × (0,∞);C) by

(A.42) b?(x, y, ξ, λ) := γ(ξ, λ)
n
2

∫
Rn

φ
(
γ(ξ, λ)

1
2 (x− z)

)
φ
(
γ(ξ, λ)

1
2 (y − z)

)
b(z, λ, ξ) dz,

with γ defined as in (A.1). An inspection of (A.42) yields that b? ∈ Λ̄s1
2

(Rn). Moreover, by
Proposition A.16, we can find b?L ∈ Λs1

2

(Rn) such that

(A.43) Opλ(b
?) = opLλ(b

?
L).

Now, a direct computation using (A.3), (A.39), (A.42), and (A.43) then gives

Re〈opLλ(b?L)ψ, ψ〉L2(Rn) =

∫
Rn

∫
Rn

γ(ξ, λ)
n
2

∣∣∣∣∫
Rn

φ
(
γ(ξ, λ)

1
2 (x− z)

)
ψ(x) dx

∣∣∣∣2 b(z, ξ, λ) dzdξ
≥ 0,

as long as λ ≥ λ0. As a result, we obtain

(A.44) Re〈opLλ(b)ψ, ψ〉L2(Rn) ≥ Re〈opLλ(b− b?L)ψ, ψ〉L2(Rn), λ ≥ λ0.

Now, by Proposition A.16, we can write, for any (x, y) ∈ Rn and λ as before,

b∗L(x, ξ, λ) = b∗(x, x, ξ, λ)− i(∇ξ · ∇y)b
∗(x, x, ξ, λ) + r∗L(x, ξ, λ),(A.45)

with rL ∈ Λs−1
1
2

(Rn). Further, by a change of variables, we then compute

b∗(x, x, ξ, λ) =

∫
Rn

φ(z)2b
(
x− γ(ξ, λ)−

1
2 z, ξ, λ

)
dz,(A.46)

−i(∇ξ · ∇y)b
∗(x, x, ξ, λ) = −i∇ξ ·

∫
Rn

γ(ξ, λ)
1
2φ(z)∇φ(z)b

(
x− γ(ξ, λ)−

1
2 z, ξ, λ

)
dz

= −i
∫
Rn

φ(z)∇φ(z) ·B
(
x− γ(ξ, λ)−

1
2 z, ξ, λ

)
dz,

with B := (B1, . . . , Bn) a vector-valued function such that Bk ∈ Λ
s− 1

2
0 (Rn), 1 ≤ k ≤ n.

Applying Taylor’s theorem, we can then expand

b∗(x, x, ξ, λ) = b0,0(x, ξ, λ) + b0,1(x, ξ, λ) + b0,2(x, ξ, λ),(A.47)

b0,0(x, ξ, λ) = b(x, ξ, λ)

∫
Rn

φ(z)2 dz,

b0,1(x, ξ, λ) = −γ(ξ, λ)−
1
2∇xb(x, ξ, λ) ·

∫
Rn

φ(z)2z dz,

b0,2(x, ξ, λ) = γ(ξ, λ)−1

∫
Rn

∫ 1

0

(1− t)φ(z)2z · ∇2
xb
(
x− tγ(ξ, λ)−

1
2 z, ξ, λ

)
· z dtdz.

Recalling (A.1), (A.2), and (A.41), while noting that z 7→ φ2(z)z is odd, then

(A.48) b0,0(x, ξ, λ) = b(x, ξ, λ), b0,1(x, ξ, λ) = 0, b0,2 ∈ Λs−1
0 (Rn).

Similarly, applying Taylor’s theorem again, we also expand

−i(∇ξ · ∇y)b
∗(x, x, ξ, λ) = b1,0(x, ξ, λ) + b1,1(x, ξ, λ),(A.49)
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b1,0(x, ξ, λ) = −iB(x, ξ, λ) ·
∫
Rn

φ(z)∇φ(z) dz

= 0,
(A.50)

since φ is compactly supported. Moreover, from the definition of B in (A.46), we obtain

(A.51) b1,1 ∈ Λs−1
0 (Rn),

Finally, combining (A.45)–(A.51), we conclude that

b− b?L ∈ Λs−1
1
2

(Rn).

The desired inequality (A.40) now follows from Proposition A.20, (A.44), and the above. �

Remark A.22. Furthermore, if b ∈ Λsδ(Rn) instead in Theorem A.21, where δ ∈ [0, 1), then
(A.40) again holds, but with the Sobolev order 1

2
(s− 1) replaced by 1

2
(s− (1− δ)).
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