
THE CHRIST-KISELEV LEMMA

ARICK SHAO

1. Introduction

The Christ-Kiselev lemma, as presented here, is a general boundedness property
for certain integral transforms T involving a kernel. This version of the lemma
states that, in certain spaces, if such an integral transform is bounded, then some
restrictions of this integral transform to partial domains must also be bounded. This
estimate has important applications in the study of dispersive partial differential
equations, in particular in establishing Strichartz-type estimates. In this short note,
we state and prove this property; the proof is based on that found in [3]. A more
general version of this estimate can be found in the original paper, [1].

The most basic version of the integral Christ-Kiselev lemma is the following.

Theorem 1 (Christ, Kiselev). Consider a linear operator

T : Lp(R)→ Lq(R), 1 ≤ p < q <∞,

such that T can be expressed as an integral transform

Tf(t) =

∫
R
K(t, s)f(s)ds, K : R× R→ C.

If, for sufficiently nice g : R→ C, we define

T̃ g(t) =

∫ t

−∞
K(t, s)g(s)ds,

then T̃ extends to a bounded linear operator from Lp(R) into Lq(R).

This result can be directly generalized to the case in which our linear operator
T (and in particular, the kernel K) acts on Banach spaces.

Theorem 2 (Christ, Kiselev). Let X and Y denote Banach spaces, and let

T : Lp(R;X)→ Lq(R;Y ), 1 ≤ p < q <∞,

such that T can be expressed as an integral transform

Tf(t) =

∫
R
K(t, s)f(s)ds, K : R× R→ B(X,Y ),

with B(X,Y ) denoting the space of bounded linear transformations from X into Y .
If, for sufficiently nice g : R→ X, we define

T̃ g(t) =

∫ t

−∞
K(t, s)g(s)ds,

then T̃ extends to a bounded linear operator from Lp(R;X) into Lq(R;Y ).
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1.1. Applications to Dispersive PDE. In the study of dispersive partial differ-
ential equations, the Christ-Kiselev lemma plays an important role in the applica-
tion of Strichartz estimates. To be more explicit, consider the initial value problem
for the inhomogeneous linear Schrödinger equation,

(1) i∂tu+ ∆u = F , u|t=0 = u0.

Here, F and the unknown u are functions from R×Rd into C, while the initial data
u0 is a function from Rd into C. If u0 and F are in sufficiently nice spaces, then by
Duhamel’s principle, the solution to (1) can be expressed as

(2) u(t) = eit∆u0 + i

∫ t

0

ei(t−s)∆F (s)ds.

Strichartz estimates can be used in conjunction with (2) to obtain spacetime
bounds for u. For the homogeneous linear Schrödinger equation, one has

(3) ‖eit∆u0‖Lq
tL

r
x(R×Rd) .d,q,r ‖u0‖L2

x(Rd),

where the parameters q, r, and d satisfy

q, r ∈ [2,∞],
2

q
+
d

r
=
d

2
, (q, r, d) 6= (2,∞, 2).

This estimate controls the first term on the right-hand side of (2).
For the inhomogeneous term in (2), that is, the second term on the right-hand

side, one must resort to the dual formulation of (3). Indeed, if

q′, r′ ∈ [1, 2],
1

q
+

1

q′
= 1,

1

r
+

1

r′
= 1,

then a standard duality argument applied to (3) yields

(4)

∥∥∥∥∫
R
e−is∆F (s)ds

∥∥∥∥
L2

x(Rd)

.d,q,r ‖F‖Lq′
t L

r′
x (R×Rd)

.

Furthermore, combining (3) and (4), we obtain the estimate

(5)

∥∥∥∥∫
R
ei(t−s)∆F (s)ds

∥∥∥∥
Lq

tL
r
x(R×Rd)

.d,q,r ‖F‖Lq′
t L

r′
x (R×Rd)

.

However, (5) still does not quite apply to (2). At a fixed time t, the time integral
in the left-hand side of (5) is over all of R, while the corresponding integral on the
right-hand side in (2) only goes up to t. Consequently, in order to convert (5) into
an applicable estimate, we must apply the Christ-Kiselev lemma, i.e., Theorem 2.
Finally, by combining all the above, we obtain the following bound for u:

(6) ‖u‖Lq
tL

r
x([0,∞)×Rd) . ‖u0‖L2

x(Rd) + ‖F‖
Lq′

t L
r′
x ([0,∞)×Rd)

.

A similar argument can, of course, be made for negative times.
For further background regarding dispersive partial differential equations and

Strichartz estimates, the reader is referred to [4].
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2. Proof of Theorem 2

First, without loss of generality, we can assume that

‖f‖pLp(R;X) =

∫
R
‖f(s)‖pXds = 1.

Thus, our goal is to show that

‖T̃ f‖Lq(R;Y ) . 1.

2.1. The Whitney Decomposition. We first define some basic terminology. Re-
call that the dyadic intervals are subsets of R of the form

Ij,k = (k2−j , (k + 1)2−j ], j, k ∈ Z.

Moreover, a dyadic square is a subset of R2 of the form

Qj,k,l = Ij,k × Ij,l, j, k, l ∈ Z.

For any dyadic square Q, we define π1(Q) and π2(Q) to be the projections of Q to
its first and second components, respectively. In other words,

π1(Qj,k,l) = Ij,k, π2(Qj,k,l) = Ij,l.

Furthermore, given Q as above, we let l(Q) denote the side length of Q, e.g.,

l(Qj,k,l) = 2−j .

The Whitney covering lemma states the following.

Lemma 3 (Whitney Covering Lemma). Let Ω be a proper open subset of R2.
Then, Ω can be expressed as a disjoint union of (countably many) dyadic squares.
Moreover, for any such dyadic square Q comprising Ω, we have that

l(Q) < d(Q, ∂Ω) ≤ (1 +
√

2) · l(Q),

where d(Q, ∂Ω) denotes the distance from Q to the boundary of Ω.

For the proof and a detailed discussion of the Whitney covering lemma, the
reader is referred to [2]. The basic idea of the proof is as follows: for any x ∈ Ω, we
let Qx be the largest dyadic square containing x such that

l(Qx) < d(Qx, ∂Ω).

The maximality condition for Qx implies that

l(Qx) < d(Qx, ∂Ω) ≤ (1 +
√

2)l(Qx).

We add Qx to our desired collection D of dyadic squares. To see that this produces
a partition of Ω, we need only to observe that if y ∈ Qx, then the corresponding
dyadic square Qy generated from y is equal to Qx.

Remark. The Whitney covering lemma extends naturally to open subsets of Rn,
with the dyadic squares replaced by n-dimensional dyadic cubes. In this text, how-
ever, we will only require the two-dimensional case.

We now apply the Whitney covering lemma to the region

Ω = {(x, y) ∈ R2 | x < y}.
This yields a collection D of pairwise disjoint dyadic squares, with

Ω =
⋃
Q∈D

Q.
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We collect some basic observations about the decomposition D.

Lemma 4. The following properties hold:

(1) For any 0 < x < y < 1, there is a unique Q ∈ D such that (x, y) ∈ Q.
(2) If Q ∈ D, then supπ1(Q) < inf π2(Q). In other words, π2(Q) lies to the

right of π1(Q), and π1(Q) and π2(Q) are non-adjacent.
(3) If (x, y) ∈ Ω∩ ([0, 1]× [0, 1]), and if Q is the dyadic square in D containing

(x, y), then l(Q) ≤ 1, where l(Q) is the side length of Q.
(4) For any dyadic interval J satisfying J ∩ [0, 1] 6= ∅, there exist at most four

dyadic squares Q ∈ D such that π2(Q) = J .

Proof. Property (1) is immediate, since Ω is a disjoint union of the elements of D.
Moreover, (2) follows from the fact any Q ∈ D is contained in Ω and satisfies

d(Q, ∂Ω) > 0.

For (3), we appeal to the observation

d(Q, ∂Ω) ≤ d((x, y), ∂Ω) < 1,

and to our construction of D, as described in the paragraph after Lemma 3.
Finally, for (4), suppose Q1, . . . , Q5 ∈ D are distinct, with

Ii = π1(Qi), π2(Qi) = J , l = l(Qi), i ∈ {1, . . . , 5}.

Moreover, we can assume that these five intervals are ordered such that I1 lies
furthest to the left and I5 lies furthest to the right. By our construction for D, we
have l < d(Q5, ∂Ω). Let Q∗1 denote the parent square of Q1, i.e., the unique dyadic
square of side length 2l that contains Q1. By the triangle inequality,

d(Q1, ∂Ω) ≤ d(Q∗1, ∂Ω) +
√

2 · l.

Furthermore, if inf I5 − inf I1 = D > 0, then by geometric considerations,

d(Q1, ∂Ω) = d(Q5, ∂Ω) +
D√

2
.

Since the distance between inf I1 and inf I5 is at least 4l, then

d(Q∗1, ∂Ω) ≥ d(Q1, ∂Ω)−
√

2 · l

≥ d(Q5, ∂Ω) +
4√
2
· l −

√
2 · l

> l +
√

2 · l.

As a result,

d(Q∗1, ∂Ω) > 2l = l(Q∗1),

which, due to the maximality property defining D, contradicts that Q1 ∈ D. �

2.2. Decomposition of T̃ f . The next step is to decompose T̃ f , using the above
Whitney decomposition of Ω. First of all, we define

F : R→ [0, 1], F (t) =

∫ t

−∞
‖f(s)‖pXds,

which is a nondecreasing function onto [0, 1].
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Lemma 5. If t ∈ R, then for almost every s ∈ R with s < t,

(7) K(t, s)f(s) =
∑
Q∈D

χπ2(Q)(F (t))K(t, s)[χπ1(Q)(F (s))f(s)],

where χA denotes the characteristic functions over A.

Proof. For any s < t, we have two cases. First, if F (s) < F (t), then by Lemma 4,
there exists unique Qs,t ∈ D such that (F (s), F (t)) ∈ Qs,t. Thus, we have

K(t, s)f(s) = χQs,t(F (s), F (t)) ·K(t, s)f(s)

= χπ2(Qs,t)(F (t))K(t, s)[χπ1(Qs,t)(F (s))f(s)]

=
∑
Q∈D

χπ2(Q)(F (t))K(t, s)[χπ1(Q)(F (s))f(s)].

Next, note that by the definition of F ,∫
F−1(F (t))

‖f(τ)‖pXdτ = 0.

It follows that f(s) = 0 for almost all s < t with F (s) = F (t). Thus,

K(t, s)f(s) = 0 =
∑
Q∈D

χπ2(Q)(F (t))K(t, s)[χπ1(Q)(F (s))f(s)],

with the first equality holding for almost all such s, and with the second equality
holding unconditionally. This completes the proof of the lemma. �

Applying Lemma 5, we can decompose T̃ f as follows:

T̃ f(t) =
∑
Q∈D

∫ t

−∞
χπ2(Q)(F (t))K(t, s)[χπ1(Q)(F (s))f(s)]ds

=
∑
Q∈D

χπ2(Q)(F (t))

∫
R
K(t, s)[χπ1(Q)(F (s))f(s)]ds

=
∑
Q∈D

χπ2(Q)(F (t))T [(χπ1(Q) ◦ F ) · f ](t).

As the above holds for any t ∈ R, we obtain the formula

T̃ f =
∑
Q∈D

(χπ2(Q) ◦ F ) · T [(χπ1(Q) ◦ F ) · f ].(8)

Finally, we refine (8) by further decomposing the sum:

T̃ f =

∞∑
j=0

∑
Q∈D

l(Q)=2−j

(χπ2(Q) ◦ F ) · T [(χπ1(Q) ◦ F ) · f ](9)

=

∞∑
j=0

2j−1∑
k=0

∑
Q∈D

π2(Q)=Ij,k

(χIj,k ◦ F ) · T [(χπ1(Q) ◦ F ) · f ].

In particular, the terms in the above in which π2(Q) is either Ij,−1 or Ij,2j can be
discarded, as all these terms vanish by the definition of F .
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2.3. Estimating T̃ f . From (9), we immediately estimate

(10) ‖T̃ f‖Lq(R;Y ) ≤
∞∑
j=0

∥∥∥∥∥∥∥∥
2j−1∑
k=0

∑
Q∈D

π2(Q)=Ij,k

(χIj,k ◦ F ) · T [(χπ1(Q) ◦ F ) · f ]

∥∥∥∥∥∥∥∥
q· 1q

Lq(R;Y )

.

In the summations within the norm in the right-hand side of (9), note that any two
distinct terms represent integrals with disjoint supports. As a result,

‖T̃ f‖Lq(R;Y ) ≤
∞∑
j=1

2j−1∑
k=0

∑
Q∈D

π2(Q)=Ij,k

‖(χIj,k ◦ F ) · T [(χπ1(Q) ◦ F ) · f ]‖qLq(R;Y )


1
q

.
∞∑
j=1

2j−1∑
k=0

∑
Q∈D

π2(Q)=Ij,k

‖(χπ1(Q) ◦ F ) · f‖qLp(R;X)


1
q

,

where in the last step, we used the boundedness of T .
By the definition of F , if l(Q) = 2−j , then

‖(χπ1(Q) ◦ F ) · f‖pLp(R;X) = 2−j .

Moreover, by part (4) of Lemma 4, for any j ≥ 0 and 0 ≤ k < 2j , there are at most
five Q ∈ D such that π2(Q) = Ij,k. Combining these observations, we have

‖T̃ f‖Lq(R;Y ) .
∞∑
j=1

2j−1∑
k=0

2−
qj
p

 1
q

≤
∞∑
j=0

(2−
qj
p 2j)

1
q ≤

∞∑
j=0

2j(
1
q−

1
p ).

Since p < q, then q−1 − p−1 < 0, and it follows that

‖T̃ f‖Lq(R;Y ) <∞,

as desired. This completes the proof of Theorem 2.

3. Further Extensions

Finally, we discuss some extensions and generalizations of Theorems 1 and 2.

3.1. The Case q =∞. First, we can extend Theorem 2 to the case q =∞.

Theorem 6. Let X and Y denote Banach spaces, and let

T : Lp(R;X)→ L∞(R;Y ), 1 ≤ p ≤ ∞,

such that T can be expressed as an integral transform,

Tf(t) =

∫
R
K(t, s)f(s)ds, K : R× R→ B(X,Y ).

If T̃ is defined as in the statement of Theorem 2, then T̃ extends to a bounded linear
operator mapping from Lp(R;X) into L∞(R;Y ).

Remark. In contrast to the statement of Theorem 2, the exponent p is allowed to
be the same as q =∞ in the statement of Theorem 6.
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Proof. For any t ∈ R, we can write T̃ f(t) as

|T̃ f(t)| =
∣∣∣∣∫ ∞
−∞

K(t, s)[χ(−∞,t](s)f(s)]ds

∣∣∣∣ = |T [χ(−∞,t]f ](t)|.

From our boundedness assumption for T , we now have

|T̃ f(t)| ≤ ‖T [χ(−∞,t]f ]‖L∞(R;Y ) . ‖χ(−∞,t]f‖Lp(R;X) . ‖f‖Lp(R;X).

This completes the proof of Theorem 6. �

Furthermore, if, assuming the same setting as in Theorem 6, we define

T̂ g(t) =

∫ ∞
t

K(t, s)g(s)ds,

then an analogous argument shows T̂ is also bounded from Lp(R;X) into L∞(R;Y ).

3.2. The Case p = 1. Using the q =∞ case in Theorem 6 along with a standard
duality argument, we can prove an analogue for the opposite case, p = 1.

Theorem 7. Let X and Y denote Banach spaces, and let

T : L1(R;X)→ Lq(R;Y ), 1 ≤ q ≤ ∞,

such that T can be expressed as an integral transform,

Tf(t) =

∫
R
K(t, s)f(s)ds, K : R× R→ B(X,Y ),

If T̃ is defined as in the statement of Theorem 2, then T̃ extends to a bounded linear
operator mapping from L1(R;X) into Lq(R;Y ).

Proof. Let q′ satisfy q−1 +(q′)−1 = 1, so that the adjoint S of T is a bounded linear

operator from Lq
′
(R;Y ) into L∞(R;X). Moreover, for appropriate f and g,∫ ∞
−∞

Sg(t)f(t)dt =

∫ ∞
−∞

g(t)Tf(t)dt

=

∫ ∞
−∞

g(t)

[∫ ∞
−∞

K(t, s)f(s)ds

]
dt

=

∫ ∞
−∞

[∫ ∞
−∞

K(s, t)g(s)ds

]
f(t)dt.

As a result, S is of the same form as T , i.e.,

Sg(t) =

∫ ∞
−∞

K(s, t)g(s)ds.

Next, we consider the adjoint U of T̃ :∫ ∞
−∞

Ug(t)f(t)dt =

∫ ∞
−∞

g(t)T̃ f(t)dt

=

∫ ∞
−∞

g(s)

[∫ s

−∞
K(s, t)f(t)dt

]
ds

=

∫ ∞
−∞

[∫ ∞
t

K(s, t)g(s)ds

]
f(t)dt.
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It follows that U is precisely Ŝ, as defined in the discussion after the proof of
Theorem 6. Since S is bounded from Lq

′
(R;Y ) into L∞(R;X), then so is U .

Consequently, by duality, T̃ is also bounded from L1(R;X) into Lq(R;X). �

3.3. The General Estimate. The original paper by Christ and Kiselev, [1], actu-
ally proved a more general estimate for maximal-type operators. In this generalized
estimate, the operator T now acts on arbitrary measure spaces, i.e.,

T : Lp(X,µ)→ Lq(Y, ν).

In addition, we consider monotonic families of characteristic functions χα, parame-
trized by α ∈ R, satisfying certain conditions.

We now define T̃ to be the following maximal operator:

T̃ g = sup
α∈R

T (χαf).

The main theorems now state that if T is bounded from Lp to Lq, like in our
previous estimates, then T̃ is also bounded from Lp to Lq.

In particular, all our Theorems can be recovered from this general estimate by
taking T as before, and by defining χα = χ(−∞,α].
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