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These notes are the second of a pair of brief articles informally introducing the mathematics

behind the theory of relativity. Here, we survey general relativity, which extends special

relativity (covered in the preceding article) by taking gravity into account. Like special

relativity, which offered a radically different model of the universe compared to Newtonian

mechanics, general relativity also treats gravitation in a revolutionary way.

In order to keep these notes appropriately short, most of the details—e.g., technical def-

initions, proofs, and computations—are omitted. Background knowledge in differential ge-

ometry would be helpful for better understanding various points, but will not be strictly

required due to the informal nature of the discussions. To keep the main thread of discus-

sion nontechnical, some more formal characterizations that rely on background in differential

geometry or differential equations are relegated to footnotes.

An important disclaimer is that these notes focus primarily on the mathematical, rather

than the physical, aspects of the theory. This is mostly by necessity, since I am a mathemati-

cian (and not a physicist), with background in partial differential equations and differential

geometry (and not in theoretical physics). Consequently, this article will approach the sub-

ject from a mathematical viewpoint, in particular in terms of Lorentzian geometry. Physicists

will rightfully have a different perspective on many of these points.

For a detailed mathematical reference, the reader is referred to [9] for a formal development

of Lorentzian (as well as Riemannian) geometry and some aspects of relativity. For a physics-

oriented text that contains a fair amount of mathematical content, see, for instance, [12].

1. Lorentzian Geometry

In classical Newtonian physics, the gravitational field is modeled as an object existing

in space and time, lying on top of the background (Euclidean) geometry. In the context of

special relativity, a natural hope would be to construct an analogous object within Minkowski

geometry. However, such efforts faced a fundamental difficulty, the equivalence principle,

which also became a main motivation for Einstein in developing general relativity.

The most common informal explanation of this principle is that there is no way to distin-

guish between motion in a gravitational field and being in an accelerating reference frame.

The thought experiment usually given as an example is the following: one can observe, say,

what happens on the surface of the earth due to its gravitational pull, or one can observe
1
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what happens in a closed elevator in an accelerating rocket deep in space away from gravita-

tional influences. The principle, then, is that barring additional information (e.g., a window

in the elevator to see outside), one cannot distinguish between these two situations.

Another (less colorful) statement of the equivalence principle (see [12], for instance) is that

all bodies behave the same way within a gravitational field. Thus, one cannot measure the

gravitational field by somehow constructing an observer that is “shielded” from its effects.

From this, Einstein’s eventual realization is that gravity perhaps should not be modeled

as a field on top of Minkowski geometry, but rather as a part of the intrinsic structure of the

spacetime. In other words, his revolutionary idea is that gravity could be represented by the

geometry of the spacetime itself, in particular by how the spacetime is “curved”.

1.1. Lorentzian Manifolds. We can now conveniently take advantage of the fact that in

the previous article, we already described special relativity in terms of differential geometry.

To be more specific, recall that the background setting in special relativity is Minkowski

spacetime, consisting of the 4-dimensional manifold R4 and the flat metric

(1.1) gM := −dt2 + dx2 + dy2 + dz2.

For general relativity, we want to extend our notion of spacetime, that is, we want to replace

Minkowski spacetime (R4, gM) by an abstract manifold (M, g) “of the same type”.

First, we want M to be another 4-dimensional object. The precise mathematical notion

is that of a (smooth) manifold. Less formally, this refers to an object M that locally looks

like R4 at small enough scales.1 However, on a global scale, M can look quite unlike R4; a

simple example (having little to do with relativity) is a four-dimensional sphere.

WhileM is the “object”, we have not yet determined its “geometry”. In special relativity,

this was given by the Minkowski metric gM ; here, we define on M a metric g, i.e. a “scalar

product on tangent vectors”, which will serve as an appropriate abstraction of gM :

• Recall that for two tangent vectors v and w based at some p ∈ R4, the Minkowski

metric gM defined an scalar product gM(v, w). Similarly, for two tangent vectors v

and w based at some p ∈M, the metric g defines a similar scalar product.

• Note also from (1.1) that gM has the signs (−,+,+,+), so that, informally, R4 has

one “negative” direction and three “positive” directions. We wish to mimic the same

notion of signature in g, so that it too has one negative and three positive directions.

These two requirements for g define what is called a Lorentzian metric on M.2 The pair

(M, g) is then called a Lorentzian manifold, or in physics terminology, a spacetime.3

1For each p ∈M, we can smoothly identify a neighborhood of p in M with a neighborhood of R4.
2More formally, g is, at each point of M, a bilinear form on the corresponding tangent space which has
signature (−,+,+,+) in the linear algebraic sense.
3This is not entirely accurate, as spacetimes in physics are also equipped with a time orientation, i.e., a
distinction between “past” and “future” directions.
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Remark. Like in special relativity, one should not favor one set of coordinates on M over

another; this is known as the principle of covariance in physics. One consequence is that

there is again no canonical notion of time or elapsed time; these are defined only relative to

a given observer. Furthermore, if M itself has exotic structure, then even a relative notion

of time may not be globally defined on all of M.

Remark. Readers should note that some physics texts use instead the signature convention

(+,−,−,−). While this yields an equivalent theory, many objects will have opposite signs.

For those with some background in different geometry, one should compare the above

to the more common notion of a Riemannian manifold (Σ, γ). Here, Σ is once again a

manifold, while γ is a metric (i.e., a scalar product of tangent vectors) on Σ with purely

positive signature. The simplest example of this is Euclidean space,

Σ = R3, γ = dx2 + dy2 + dz2.

Note that Lorentzian manifolds are geometric generalizations of Minkowski spacetime in the

same manner that Riemannian manifolds generalize Euclidean space.

Many concepts from Minkowski geometry extend directly to the this more abstract setting.

For instance, since spacetimes again contain both “positive” and “negative” directions, one

can directly extend the notion of causal character from Minkowski geometry. Indeed, for a

tangent vector v in M (which represents a particular direction at a particular point of M):

• v is timelike iff g(v, v) < 0.

• v is spacelike iff either g(v, v) > 0 or v = 0.

• v is null, or lightlike, iff g(v, v) = 0 and v 6= 0.

Like in special relativity, directions with different causal characters have very different phys-

ical interpretations, which we briefly summarize below.

1.2. Causality. Analogous to the special relativistic setting, points on the spacetime are

called events, representing a specific particle at a specific time. Observers in this universe

are modeled by timelike curves, i.e., curves which everywhere point in a timelike direction.

These again represent a single particle existing through time in the universe. Similarly, light

is presumed to travel along null curves in M.

Recall that in special relativity, straight timelike lines in R4 represent an object in free fall.

On general manifolds, this notion of straight lines in the strict sense does not exist. However,

on Lorentzian (and also Riemannian) manifolds, one does have a natural generalization of

straight lines known as geodesics. These are a special family of curves for which “its direction

does not change”; physically, this represents nonaccelerating motion.4

4Like in Riemannian geometry, the Lorentzian metric g induces a notion of covariant derivative of vector
fields. Geodesics then refer to curves for which its tangent vector field is parallel transported.
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As a result, in general relativity, observers in free falling motion are represented by timelike

geodesics. Similarly, light rays in general relativity are represented by null geodesics.5

The above definitions lead to the study of causality. According to our model, an event

P can be impacted by an event O in the past if and only if O can be connected to P by a

timelike or null (if we are taking light rays into account) curve. While in special relativity,

this can be entirely understood in terms of null cones and their interiors in R4, this picture

becomes far more complicated in general relativity.

More specifically, observe that the natural generalization of a null cone in Minkowski

spacetime is to take the family of null geodesics emanating from a single point p in M.

While near p, this will have the same qualitative structure as a Minkowski null cone, further

away from p, the story can be radically different. Indeed, these geodesics may twist in other

directions or even turn inwards; see Figure 1. At worst, these geodesics may intersect each

other or even converge together toward a single point.

timelikenull null

Figure 1. Null (blue) and timelike (purple) geodesics emanating from a single
point in a spacetime (with spatial directions compacted into one dimension).

1.3. Curvature and Gravity. Now that we have established our theory firmly along differ-

ential geometric lines, we next discuss how gravity is modeled within the spacetime geome-

try. One particular aspect of the geometry of (M, g) is how it is “curved”. This information

is captured in an object known as the (Riemann) curvature tensor of (M, g).6 For the

Minkowski spacetime (R4, gM), this curvature vanishes everywhere, hence it is called flat.

However, for general Lorentzian manifolds (M, g), the curvature tensor will be nontrivial.

The main idea, then, is that gravity is represented by this now nonvanishing curvature

tensor. A suggestive (but not entirely accurate) way to think about this is to picture a heavy

object lying in spacetime as putting a curved dent in the spacetime, like a person would if

standing on a soft bed or a trampoline. Then, a ball lying near the object in this dented

area would, under the influence of this curvature/gravity, roll toward the object.

5One can show that any null curve can be reparametrized so that it becomes a null geodesic.
6There are many ways to formally define this curvature. One of the most straightforward is to characterize
the curvature as the failure of covariant derivatives to commute with each other; for those familiar with
Riemannian geometry, this is a direct analogue of the curvature in Riemannian manifolds.
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One should take a moment to appreciate just how revolutionary this notion is. Gravity has,

up to this point, been characterized as a force lying on top of a fixed spacetime. Einstein’s

idea, on the other hand, is to alter the spacetime itself, and to model gravity as its curvature.

In particular, gravity is intrinsically built into the geometric structure of the spacetime itself.

2. The Einstein Equations

Through Lorentzian geometry, we have described how the spacetime—the universe—is

modeled, as well as how gravity is manifested within the structure of the spacetime. What

has not yet been discussed, however, is how matter fields (such as fluids or an electromagnetic

fields) fit in this general relativistic model.

For instance, in special relativity, the electric and magnetic fields satisfy Maxwell’s equa-

tions, which can be formulated as a system of vector or tensor partial differential equations

on R4. To port this to general relativity, we again replace the flat background R4 by its

curved counterpart M, and we “geometrize” Maxwell’s equations by replacing the usual

derivatives on R4 by Lorentz-geometric equivalents.7 Similar processes have been used to

obtain viable version of other physical theories in the context of general relativity.

However, this still leaves unanswered the question of how matter fields and gravity are

related to each other. To address this, Einstein devised another geometric relation, known

as the Einstein field equations, coupling matter fields to gravity.

2.1. Statement of the Equations. The Einstein field equations can be most succinctly

expressed as the following tensor equation on M:

(2.1) Ricg−
1

2
Scg ·g = T .

On the left-hand side, Ricg and Scg refer to the Ricci curvature and the scalar curvature of the

spacetime (M, g), respectively, which are tensor and scalar quantities that are defined from

the spacetime (Riemann) curvature. On the right, T is the stress-energy tensor associated

with the matter field(s), which is a quantity arising from the theory of the matter field.8

Remark. To simplify notations, we have chosen units so that the constant in front of T on

the right-hand side of (2.1) is exactly 1.

Hence, the full set of equations describing the universe contains:

(1) The equations describing the matter fields (arising from the relevant physical theory).

(2) The Einstein field equations (coupling the matter to gravity).

7More specifically, this is the covariant derivative via the Levi-Civita connection induced by g.
8For instance, T can be derived from the Lagrangian theory considerations.
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For example, if we take as matter the electromagnetic field, then the equations to consider

would be Maxwell’s equations along with the Einstein equations. We note that the electro-

magnetic field and the curvature are tightly coupled through these equations:

• By “geometrizing” Maxwell’s equations, this system now depends heavily on the

metric g, i.e., on the geometric structure of the spacetime.

• Since T depends on the electromagnetic field, the Einstein equations demonstrate

that the curvature also depends heavily on the electromagnetic field.

One can physically intuit the Einstein equations in multiple ways. For instance, differential

geometric considerations show that the curvature describes how nearby geodesics on a man-

ifold behave, i.e., whether they move closer together or pull further apart. By corresponding

this with how tidal forces are modeled in Newtonian theory,9 one arrives at

Ricg = T .

Note this is not (2.1), and this indeed has a serious defect. In particular, the stress-energy

tensor T should be divergence-free, corresponding to the local conservation of energy. The

Ricci curvature Ricg, however, is not divergence-free. The extra term on the left-hand side

of (2.1) serves to make the resulting quantity divergence-free, like T .

Finally, if there are no matter fields, that is, if T = 0, then (2.1) reduces to

(2.2) Ricg = 0.

This is called the Einstein-vacuum equations. As we shall see, even vacuum spacetimes can

already exhibit an interesting array of behaviors.

Remark. The Einstein equations can also be derived from variational considerations. For

those familiar with this theory, one obtains the Einstein-vacuum equations by looking for

critical points of the Einstein-Hilbert action,

(2.3) S =

∫
M

Scg ,

where the quantity being varied is the metric g itself. Furthermore, by adding to (2.3)

actions associated to matter fields, one obtains through the same variational considerations

the Einstein field equations couple with matter fields.

2.2. Solving the Einstein Equations. Now that we have determined what the Einstein

field equations are, the next question is to see how these equations can be solved. The general

hope that in understanding these equations and their solutions, one can gain insights about

the nature of the universe. More ambitiously, this knowledge could then lead to the ability

to make predictions about the future or the past of our universe.

9A more detailed description of the physical argument can be found in [12, Sect. 4.3].
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Before becoming too excited with the possibilities, however, we must first address the

question of what it means to solve the Einstein equations. As we will see, this is tightly

connected to the study of partial differential equations (often abbreviated PDEs). To simplify

this discussion, let us suppose from now on that there are no matter fields present; in other

words, we consider only the question of solving the Einstein-vacuum equations (2.2).

Let us fix some local coordinates on our spacetimeM. One can then express the metric g

with respect to these coordinates, so that its components in these coordinates become (local)

scalar functions. Furthermore, in these same coordinates, the components of Ricg can be

expressed in terms of the components of g, along with their first and second (coordinate)

derivatives. Thus, from this viewpoint, the vacuum equations (2.2) can be formulated as a

system of 10 second-order partial differential equations for the coordinate components of g.

To be a bit more specific, this system has the form

0 = −1

2

∑
α,β

gαβ(∂α∂βgµν − ∂β∂νgµα − ∂β∂µgνα + ∂µ∂νgαβ)(2.4)

+
1

2

∑
α,β,γ,δ

gµνg
αβgγδ(∂α∂βgγδ − ∂β∂γgαδ) + F0(g, ∂g).

Here, the final term F0(g, ∂g) on the right-hand side of (2.4) contains a multitude of lower-

order terms not containing second derivatives of g.

Remark. Let us highlight here on an important departure from the usual study of PDEs.

While usually one deals with PDEs involving unknowns defined on a fixed background (for

instance, Minkowski spacetime R4), here, for the Einstein equations, we are solving for the

background (M, g) itself ! Because the background itself is now part of the unknowns, one

requires some extra care to even formulate this problem sensibly.

From the above system of PDE, one can deduce that 6 of the equations contain second

derivatives of g with both derivatives in timelike directions. We refer to these 6 equations

as the evolution equations. The remaining 4 equations also contain second derivatives of g,

but not with both in timelike directions; these are called the constraint equations.

Let us first consider the evolution equations. Now, those who have some background with

PDEs know that there are many different types of equations:

• Elliptic equations, which are similar to the Laplace equation (∆φ = 0).

• Parabolic equations, which are similar to the heat equation (∂tφ−∆φ = 0).

• Hyperbolic equations, which are similar to the wave equation (∂2t φ−∆φ = 0).

Elliptic, parabolic, and hyperbolic equations differ in fundamental ways and hence have

vastly different theories for dealing with them. For instance, elliptic equations are generally

solved given boundary conditions, while parabolic and hyperbolic equations are usually solved

with initial conditions, or some combination of initial and boundary conditions.
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Thus, it is important to first determine whether the Einstein evolution equations are

elliptic, parabolic, or hyperbolic. The rather unfortunate answer is that in general, (2.4) is

none of the above. This presented a serious conundrum, which (after many contributions

by many authors) was finally fully resolved in 1952 by Yvonne Choquet-Bruhat [3].10 The

idea is that one can find a special set of coordinates—called wave coordinates—for which the

equations see extra cancellations. After these cancellations, the resulting equations for the

components of g (called the reduced Einstein equations) have the simplified form

(2.5) 0 = −1

2

∑
α,β

gαβ∂α∂βgµν + F1(g, ∂g).

In particular, the evolution equations within (2.5) can be shown to be hyperbolic.

Thus, the appropriate venue for posing and solving the Einstein evolution equations is

analogous to that for the wave equation, i.e., that of a initial value, or Cauchy, problem.

Roughly speaking, one specifies as initial data the state of the universe at a given “time”—

roughly, values of the metric and its “first time derivative”—with the goal being to solve

for the spacetime (M, g) that has this initial data. One can then appeal to classical tools

developed for (nonlinear quasilinear) hyperbolic PDE to solve the evolution equations.11

(Σ, γ, k)

(M, g) = ?

(M, g) = ?

Figure 2. The Cauchy problem for the Einstein equations. The initial data
set contains, roughly, the initial (3-dimensional) time slice Σ, its metric γ, and
the “first time derivative” k of the metric. The goal is to solve the Einstein-
vacuum equations for the spacetime (M, g) to the future and past of Σ.

The above discussion encapsulates only the evolution equations, leaving the constraint

equations yet to be solved. It turns out that these constraint equations can be formulated

as (nonlinear elliptic) PDE imposed on the initial data. In other words, we cannot take

arbitrary initial data for the evolution equations. Rather, we must restrict ourselves only to

objects that satisfy the constraint equations.12

10In addition to establishing one of the seminal results in mathematical relativity, Choquet-Bruhat was also
a pioneering woman in mathematics in a period in which such opportunities were rare.
11Wave coordinates is by no means the only way to solve the evolution equations. There exist several other
viable formulations, for which the equations become hyperbolic or mixed hyperbolic-elliptic.
12Solving the constraint equations is a tremendously complicated process in its own right, and the brief
discussion given here in no way does this industry justice.
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Thus, the full process for solving the Einstein vacuum equations is roughly as follows:

(1) We begin by specifying a 3-dimensional space Σ, which represent the “initial time”

on which we will impose the initial data.

(2) We then solve the constraint equations for valid initial data on Σ.

(3) Using this initial data, we solve the evolution equations for the spacetime (M, g).

Remark. Another important point that should not be overlooked is that the constraint equa-

tions are “propagated”. In other words, if the constraints hold for the initial data from (2),

and one solves the evolution equations as in (3), then one can show that the constraint

equations hold everywhere on the resulting spacetime.

Zooming back out to the big picture, in solving the Einstein evolution equations, the basic

questions we would like to answer is, in the language of PDEs, that of well-posedness :

(1) Given valid initial data, does a solution of the Einstein equations exist?

(2) Is the above solution unique?

(3) Does the solution “depend continuously”, in some sense, on the initial data?

Questions (1) or (2) essentially ask whether one can in principle predict the future or past,

given the current state of affairs. Question (3) extends this even further and asks whether

one can approximately predict the future or past.

The philosophical importance of (3) should not be understated. For example, suppose one

wishes to “simulate the universe” by solving the Einstein equations on a supercomputer. In

this computational setting, one can of course only approximate both the initial conditions

and the equations themselves. As a result, it is important to have reason to believe that the

approximate solutions arising from computations actually reflect the real world.

2.3. Additional Points. Finally, we address some additional related topics which deviate

from the main discussions but are nontheless quite important in relativity.

2.3.1. Gravitational Waves. Recall that the Einstein evolution equations were of hyperbolic,

or wave-like, nature. Furthermore, it was known by physicists early on that certain lineariza-

tions of the Einstein vacuum equations about Minkowski spacetime yielded wave equations.

This led physicists, even in the earliest days of general relativity, to predict the presence

of “gravitational waves”, even if they had no method of observing them. One remarkable

triumph in modern experimental physics is the detection of such gravitational waves by the

Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 [8].

2.3.2. Non-Vacuum Settings. The Einstein equations coupled with matter fields can be han-

dled in a manner analogous to the vaccum case. To solve for the metric, one can use the

same ideas as before (wave coordinates, etc.). To solve for the matter fields, one must resort

to solving equations arising the specific theory behind these fields. One additional point of
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difficulty is that because the metric and the matter fields are so closely coupled, one would

have to solve these equations simultaneously.

2.3.3. The Cosmological Constant. One can further generalize the Einstein field equations

by adding to (2.1) another term. More specifically, we consider instead13

(2.6) Ricg−
1

2
Scg ·g + Λg = T , Λ ∈ R.

This new parameter Λ is known as the cosmological constant.14

For nonzero Λ, one can still solve the Einstein equations, but one obtains solutions with

vastly different geometric properties. The simplest examples of such solutions are the de

Sitter spacetime in the case Λ > 0 and the Anti-de Sitter spacetime in the case Λ < 0; these

are the analogues of Minkowski spacetime in the case Λ = 0.

Remark. In fact, the geometry is so different that what one means by solving the Einstein

equations often changes. For instance, when Λ < 0, the appropriate problem for the evolution

equations is actually a mixed initial boundary value problem.

3. Some Special Spacetimes

The simplest example of a solution of the Einstein-vacuum equations is Minkowski space-

time, (R4, gM), the setting of special relativity. In the context of solving the vacuum equa-

tions, one arrives at Minkowski spacetime by taking as initial data Euclidean space

(R3, γ), γ := dx2 + dy2 + dz2,

with an additional condition on R3 that can be interpreted as “∂tγ = 0” (once precisely

defined, this can be shown to satisfy the constraint equations).

One can then ask whether there are other non-flat solutions of the Einstein-vacuum equa-

tions. The answer to this question is a resounding “yes”, as one can in fact solve for a wide

variety of geometrically interesting spacetimes with nontrivial dynamics. Below, we describe

some basic but important examples of such solutions.

3.1. Schwarzschild Spacetimes. Mere months after Einstein published his theory of gen-

eral relativity in 1915, Karl Schwarzschild discovered an explicit family of vacuum spacetimes,

now known as Schwarzschild spacetimes. One arrives at these spacetimes by assuming that

the metric g is spherically symmetric (hence reducing the vacuum equations to 2 dimensions)

and then solving the vacuum equations in this simplified setting.

13Notice that the left-hand side of (2.6) remains divergence-free.
14The cosmological constant was originally proposed by Einstein in order to prevent contracting or expanding
universes. Although Einstein eventually went away from this idea, more recent observations in cosmology
have suggested that the universe may indeed have a positive cosmological constant.
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This Schwarzschild metric is most commonly expressed in polar-type coordinates as

(3.1) gS := −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2(dθ2 + sin2 θ · dϕ2),

where m ≥ 0 is a constant representing mass.15 Observe that the case m = 0 is precisely the

Minkowski metric on R4, expressed in polar coordinates. However, when m > 0, it is not yet

clear what the corresponding manifoldMS is. In particular, note that the expression for gS

in (3.1) becomes singular when r = 2m and r = 0.

The first interpretation of Schwarzschild spacetimes is as describing the vacuum region

outside of a fixed, static spherical object with mass m and radius R > 2m. In this case, one

can think of the underlying manifold as

MS = R× (R,∞)× S2,

where the first “R”-component represents the value of t, and while the interval (R,∞)

represents the value of r > 2m. Moreover, for the region r ≤ R, one can attach toMS some

non-vacuum portion of spacetime representing the spherical object. In particular, when

R > 2m, this eliminates the blow-up of (3.1) whenever r = 2m and r = 0.

On the other hand, with a fuller geometric understanding, Schwarzschild spacetimes can

actually be interpreted as purely vacuum solutions. First, note that while we already men-

tioned that the formula in (3.1) is well-defined as a vacuum spacetime when r > 2m, this

also remains true in the region 0 < r < 2m.16 What remains to be understood, then, are the

“singularities of (3.1) that seem to occur at r = 2m and r = 0.

First, we observe that r = 0 is a true geometric singularity, since the curvature associated

with gS actually blows up as one approaches r = 0. As an immediate consequence, the

intrinsic geometry of (MS, gS) breaks down entirely there, and the metric gS cannot possibly

be extended to the boundary r = 0.

Even though the expression in (3.1) looks equally bad there at first glance, the horizon

r = 2m is a very different story that was not well-understood for a long while after the

discovery of the Schwarzschild metric. The resolution is that the apparent “blow-up” of

(3.1) at r = 2m only reflects the fact that the polar coordinates used in (3.1) degenerate.

Although these coordinates fare poorly at r = 2m, the metric gS itself actually remains

regular there. Thus, from the geometric point of view, there is no singularity at r = 2m.

In particular, by applying appropriate changes of coordinates, we can smoothly define

gS on the entire region r > 0 as a spherically symmetric solution of the Einstein-vacuum

equation. Thus, Schwarzschild spacetimes can be understood entirely as solutions of the

vacuum equations, even without the presence of additional spherical object of positive mass.

15The expression r2(dθ2 + sin2 θ · dϕ2) is precisely the metric of a (2-)sphere with radius r.
16In this case, 1− 2m

r < 0, so r now becomes the timelike variable, while t becomes spacelike.
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Rather than reflecting the mass of some spherical matter field, the parameter m in this

purely vacuum viewpoint can now be interpreted as a “gravitational mass”.

We now return to the question of what exactly the manifold MS is. More specifically,

how far can one extend MS so that it remains a spherically symmetric Einstein-vacuum

spacetime? While the precise answer can be difficult to visualize in its entirety, it can be

represented as follows. By omitting the 2-dimensional spherical symmetry in Schwarzschild

spacetime (where nothing interesting is happening), the remaining two dimensions of the

maximally extended manifold can be characterized by the picture in Figure 3.17

i+

i−

i0

I+

I−

r=2m

r=2m

r=0

r=0

Figure 3. Schwarzschild spacetime, modulo spherical symmetry.

Each point in Figure 3 represents a 2-sphere in MS. The shaded diamond on the right-

hand side refers to the “outer region” r > 2m that we have already discussed.18 The unshaded

diamond on the left-hand side of the diagram represents another mirror copy of this region.

Similarly, there are two copies of the “inner region” 0 < r < 2m, represented by the two

triangular sections in Figure 3. For reasons that will become apparent below, these are called

the black hole (top triangle) and white hole (bottom triangle) regions. Finally, the boundary

r = 2m dividing the outer and inner regions is known as the event horizon.

3.1.1. The Schwarzschild Black Hole. We now turn our attention to the upper triangular

region in Figure 3 (and, by symmetry, the lower triangular region as well). This region

satisfies strikingly different geometric properties compared to Minkowski spacetime.

First, one observes that light rays and particles that enter this region are then trapped

within it. To be more precise, consider a future-directed null or timelike geodesic ray begin-

ning in the shaded region r > 2m in Figure 3 which at some point crosses the event horizon

r = 2m into the upper triangular region r < 2m. Then, one can see that after entering this

triangular region, the geodesic cannot leave this region at any point in the future.

17This is known as the Penrose diagram for Schwarzschild spacetime.
18The boundary parts in Figure 3, denoted I±, ι±, and ι0, refer to a formal “infinity” of the spacetime and
represents faraway observers. For brevity, we will not discuss this further in these notes.
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The second, and even more alarming, observation is that any such free-falling particle that

becomes trapped in this region will reach the singularity r = 0 in finite time. Indeed, any

future-directed timelike geodesic beginning in this region will reach r = 0 in finite proper

time.19 At this point, this particle will “fail to exist”, since r = 0 is not a part of the

spacetime (recall the scalar curvature blows up as r ↘ 0). Thus, any such particle entering

this region is not only doomed to remain in this region for the rest of its existence, but will

actually reach the singularity and fail to exist in finite time!20

As a result of these properties, we refer to this upper triangular region as a black hole.

In particular, since light entering such a black hole cannot escape, one cannot observe the

interior of such a black hole directly. The Schwarzschild black hole was the first such example

of singular behavior in general relativity.

3.1.2. Kerr Spacetimes. Schwarzschild spacetimes are in fact a part of an even larger family

of explicit solutions to the Einstein-vacuum equations, discovered in 1963 by Roy Kerr and

known as Kerr spacetimes. These represent axially symmetric, stationary spacetimes with a

rotating black hole (in contrast to the Schwarzschild black hole, which is non-rotating). For

brevity, however, we will not discuss these further in greater detail here.

3.2. Cosmological Spacetimes. Next, we briefly consider one particular family of non-

vacuum Einstein equations that served as an early model of cosmology. Indeed, these space-

times provided scientists with some educated guesses on how our universe began.

To be more specific, we first suppose that our spacetime is homogeneous and isotropic, that

is, the spacetime is independent of both spatial position and direction. The main idea is that

these assumptions approximate how the universe would look at large scales. Mathematically,

the consequence is that (in the right coordinates), the metric takes the form

(3.2) g = −dt2 + a(t) · dΣ.

Here, dΣ represents the metric of some fixed (Riemannian) 3-manifold of constant curvature

representing the level sets of the time function t.

Now, for metrics g of the form (3.2), we consider the Einstein equations, coupled to

“dust” matter. Since the dynamics within (3.2) is in the function a, which depends only on

t, then these Einstein equations simplify into an ordinary differential equation (ODE) for

a. If we fix the geometry of dΣ, and we set an initial value for a, representing the current

state of the universe, we can then solve this ODE in time. These solutions are commonly

19Analogous to special relativity, proper time refers to the length of a timelike curve segment with respect
to g. Again, this represents the time elapsed as measured by the particle represented by the curve itself.
20Philosophically speaking, it is unclear what “failing to exist” means, and it is unclear how singularities are
manifested in the real world. However, physicists generally surmise that quantum effects take over within
the black hole before one reaches the singularity.
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known as Friedmann–Lemâıtre–Robertson–Walker, or FLRW, spacetimes, named after the

(independent groups of) scientists credited for their discovery in the 1920s and 1930s.

Moreover, if we look at these solutions backwards in time, we see that a(t) approaches

zero after a finite amount of time. Thus, if one believes in this cosmological model, then the

universe shrinks to nothing and encounters a singularity at some finite time in the past (the

“big bang singularity”). In fact, this mathematical model provided the earliest intuitions for

the now-popular Big Bang Theory in cosmology.

4. Formation of Singularities

In the remaining two sections of this article, we address two general mathematical questions

in relativity for which there is much ongoing research. In this section, we delve further into

the study of singularities, such as those found within the Schwarzschild black holes.

4.1. Singularities in Relativity. From a physical perspective, the Schwarzschild singular-

ity had dire consequences. A freely falling observer that enters the black hole region would,

from its own point of view, cease to exist after a finite amount of time, terminating as the

curvature of the spacetime blows up. The existence of reasonable observers meeting such a

premature end was a serious challenge to the validity of the theory of relativity.

A pressing theoretical question, then, is the following: Is the Schwarzschild singularity

present only because Schwarzschild spacetimes are exceptionally special solutions of the Ein-

stein vacuum equations? In other words, if one looks at “most” other solutions of the

Einstein-vacuum equations, would one not find such singularities?

The more distressing alternative would be that such singularities are “generic”. Could

there be unavoidably large classes of solutions which exhibit singularities?

Before we answer this question, we must first clarify what one means mathematically by

“singularity”. The point of view of partial differential equations provides the usual answer:

one thinks of a singularity forming when a solution of a PDE fails to exist after only a finite

amount of time. However, for the Einstein equations, this fails to be satisfactory, since there

is no absolute notion of time. For instance, if a solution of the Einstein-vacuum equation

blows up at a finite value of a time coordinate t, then one can transform to a different time

coordinate t′ which goes to infinity at the blow-up.

To capture a reasonable absolute notion of singularity, we must adopt a more geometric

view. More specifically, we characterize singularities in the same manner as the Schwarzschild

singularity, through the notion of geodesic incompleteness. We say that a singularity forms

if there exist timelike or null geodesics that terminate before its parameter goes to infinity.21

Note that while we can certainly reparametrize geodesics (e.g., changing the speed of the

21In the timelike case, this occurs when freely falling observers terminate after finite proper time.
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free fall), whether the geodesic terminates finitely or not remains unchanged. Thus, this

characterization of singularities remains intrinsic to the spacetime.

4.2. Singularity Theorems. We now return to the question of whether singularities are

generic. This question was answered positively through a number of spectacular singularity

theorems, beginning with the Penrose singularity theorem in 1965 [10].22

Very roughly, the Penrose singularity theorem stated the following:

• The presence of a trapped surface in the spacetime (along with some other generic

conditions) guarantees the existence of a singularity.23

Informally, by a trapped surface, we mean a surface S in the spacetime on which gravity is

so strong that all light rays emanating from S, both ingoing and outgoing, are being pulled

closer together. The simplest examples of such trapped surfaces are two-dimensional spheres

in Schwarzschild spacetimes within the black hole region, which by the singularity theorem

foreshadow the upcoming gravitational collapse.

Figure 4. Untrapped 2-sphere (left) versus trapped 2-sphere. The blue ar-
rows represent future-pointing null directions emanating from the spheres.

Note in particular that the existence of trapped surfaces is a very generic condition, in

that if we slightly perturb a solution of the Einstein equations that contains a trapped

surface (such as a Schwarzschild spacetime), then the perturbed spacetime will also contain

a trapped surface. As a result, the formation of singularities is a “typical” phenomenon

intrinsic to relativity and must be addressed by any serious study of the theory.

On the other hand, while the Penrose singularity theorem gives the existence of a singular-

ity, it gives no information about the nature of this singularity, or how it forms. Obtaining

a deeper understanding of the formation of singularities is one of main research directions

in mathematical relativity. While there exist many specific examples of singularities (such

as the aforementioned Schwarzschild and big bang singularities), the rigorous study of more

general singularities is still in its infancy.

4.3. Dynamical Formation of Singularities. For the full Schwarzschild spacetimes, any

corresponding initial data set for the Einstein-vacuum equations must already contain a

trapped surface. In other words, from the PDE point of view, before even solving the

22The theorem is named after physicist Sir Roger Penrose.
23More specifically, the Penrose theorem establishes null geodesic incompleteness.
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equations (i.e., predicting the future), we have already condemned ourselves to a having a

singularity form. This suggests the following question: do there exist “nice” initial data

for the Einstein equations containing no trapped surfaces for which the resulting spacetime

develops a singularity at some point in the future.

This was a long-standing open problem which was recently answered affirmatively. In

2009, in a book spanning almost 600 pages, D. Christodoulou [4] constructed a large class of

spacetimes initially containing no trapped surfaces but eventually develops one in the future.

This result was a breakthrough not only in relativity but also in studying nonlinear PDEs.

4.4. Cosmic Censorship. The inevitable possibility of singularities in relativity poses yet

another issue. As the laws of physics break down as one approaches this singularity (more-

over, quantum effects are expected to take precedence near singularities), if we could observe

such a singuliarty directly, then one may argue that we could lose the ability to “predict the

future”. In other words, general relativity could fail to be deterministic.

This led Sir Roger Penrose in 1969 to conjecture [11] that if a singularity does form, then

it must form within a black hole, where no light can escape and the singularity could not be

observed. This conjecture, known as cosmic censorship, is split into two separate statements:

• Weak cosmic censorship: singularities must be hidden within event horizons and

hence cannot be observed from the outside.

• Strong cosmic censorship: general relativity is deterministic—given appropriate ini-

tial data for the universe, we can predict the future and past of the universe.

There are numerous issues associated with establishing cosmic censorship. For example,

a less serious but irritating issue is that despite the names “weak” and “strong” cosmic

censorship, it is known that neither statement implies the other.

A far more serious issue, though, is that both the weak and strong cosmic censorship

statements, informally stated as above, are false. For instance, there are numerous isolated

examples of spacetimes with naked singularities that are not hidden within black holes.

Undeterred, physicists then sought to refine the notion of cosmic censorship:

• Under “reasonable generic” conditions, singularities must be hidden in black holes.

In general, these refined cosmic censorship conjectures are widely open problems.24 An

immediate issue arises from the vague terms “reasonable” and “generic”, as the precise math-

ematical formulation of the conjectures remains unclear. Thus, the question is not just to

find mathematical proofs for these conjectures, but to also figure out what the mathematical

statement we wish to prove is in the first place.

24There do exist proofs of cosmic censorship statements in restricted settings. For instance, in the works of
Christodoulou in the 1990s on spherically symmetric Einstein-scalar field spacetimes, there do exist space-
times with naked singularities, but these disappear after a slight perturbation of the spacetime.
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5. Dynamics and Asymptotics

In the remaining section on topics of ongoing investigation, we return to the perpective of

mathematical relativity from partial differential equations. When studying an evolutionary

PDE, such as the heat, wave, or Schrödinger equations, the ultimate goal is to fully under-

stand the dynamics of solutions. Given any initial data representing the state at a given

time, we wish to determine how the solution behaves at later (or in some cases, earlier)

times, that is, we wish to “predict the future”.

The Einstein-vacuum equations also fit within this frame work. From our previous dis-

cussion on well-posedness, “predicting the future” is in principle possible, in the sense that

appropriate initial data results in a unique solution of the Einstein equations.25 However,

such existence and uniqueness results give no indication of how these solutions behave, which

is a much more difficult question that is actively researched today. Thus, well-posedness re-

sults, while foundational, only represent the beginning of a long, ongoing story.

5.1. The Final State Conjecture. If one were to impose general, perhaps badly behaved,

initial data, then the corresponding spacetime solving the Einstein equations could behave

poorly as well, at least for short times. However, one may ask if one sees something different

over long times. Do the Einstein equations contain some special structure that allow generic

solutions to resolve in some universal way for long times? Physically speaking, what do the

PDEs tell us about the eventual “fate of the universe”?

One can gain some inspiration from simpler nonlinear PDEs. For instance, for various

model nonlinear wave equations, the expected result is the so-called soliton resolution con-

jecture: roughly, a generic solution is expected to, asymptotically in time, resolve to a sum

of solitons (i.e., solutions which are time-independent modulo symmetries) plus a “radiating

part” that decays like a linear wave. This is currently a very active area of research in

nonlinear PDEs, in which significant recent progress has been made.

One can also formulate a corresponding statement for the Einstein-vacuum equations.

Indeed, the final state conjecture states that a generic solution of the Einstein-vacuum equa-

tions arising from asymptotically flat, or Euclidean, initial data should, asymptotically in

time, resolve into a superposition of Kerr black holes (the “solitons”) and a “radiative” part.

Given the complexity of the Einstein equations, the final state conjecture is currently an

exceedingly difficult problem and is well out of reach. However, research efforts in mathemat-

ical relativity have already begun inching slowly toward this goal by first attacking special

cases of the final state conjecture.

5.2. Stability. For instance, rather than considering generic solutions of the vacuum equa-

tions, we consider subclasses of solutions that are “close to” explicit solutions, such as

25Excepting global issues that would arise from a potential failure of cosmic censorship.
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Minkowski, Schwarzschild, and Kerr spacetimes. More specifically, if we begin with initial

data that is sufficiently near data for one of these spacetimes, then is the resulting spacetime

close to the explicit solution for all times? This is the question of global stability.26

The crowning achievement in this direction is the work of Christodoulou and Klainerman,

who in 1993 proved, in a 526-page book, the global stability of Minkowski spacetime [5].

They proved that for initial data “sufficiently close” to Euclidean space, the solution indeed

remains close to Minkowski spacetime for all time. Furthermore, asymptotically in time, the

solution in fact decays to Minkowski spacetime.

On the other hand, the global stability of the larger family of Kerr spacetimes remains

an open problem at this time, though significant recent progress has been made (see [7]).

A fundamental difficulty of this more general problem is that if one begins with data close

to one Kerr spacetime, then the resulting solution could asymptotically decay to a different

Kerr spacetime, with different mass and angular momentum.

5.3. Rigidity. If we view the final state conjecture from the perspective of soliton reso-

lution, then the Kerr spacetimes correspond to the “solitons” in the theory of nonlinear

wave equations. In order to see whether this analogy is viable, though, we must first de-

termine whether these Kerr black holes are essentially the only stationary solutions of the

Einstein-vacuum equations.27 This is the question of black hole rigidity.

Roughly, the conjecture is that the only asymptotically flat, stationary, Einstein-vacuum

black hole spacetimes are the Kerr spacetimes. There have been many partial results in this

direction (see, e.g., [1, 2, 6]), but as of now, a full proof of this conjecture remains open.

6. Conclusion

Unfortunately, these short notes can only barely scratch the surface of this fascinating area

of research. Mathematical relativity is a young and fast-growing field, with many compelling

questions that are of interest in both mathematics and theoretical physics. Hopefully, the

interested reader would, upon reading these notes, be inspired to learn more about relativity

and to further explore the research being conducted in this area.
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nonlinéaires, Acta Math. 88 (1952), 141–225.

4. D. Christodoulou, The formation of black holes in general relativity, EMS Publishing House, 2009.

5. D. Christodoulou and S. Klainerman, Global nonlinear stability of the Minkowski space, Princeton

University Press, 1993.
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