
A BRIEF INTRODUCTION TO MATHEMATICAL RELATIVITY
PART 1: SPECIAL RELATIVITY
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These notes are the first of a pair of brief articles containing an informal introduction to

the mathematics behind the theory of relativity. Here, we survey special relativity, which rep-

resents the case in which gravitational effects are negligible, and which served as a precursor

to general relativity.

In order to keep these notes appropriately short, most of the details—e.g., technical defini-

tions, proofs, and computations—are omitted. Background knowledge in differential geome-

try would be helpful here for understanding various points, but will not be strictly required

due to the informal nature of the discussions.

An important disclaimer is that these notes focus primarily on the mathematical, rather

than the physical, aspects of the theory. This is mostly by necessity, since I am a mathemati-

cian (and not a physicist), with background in partial differential equations and differential

geometry (and not in theoretical physics). Consequently, this article will approach the

subject from a mathematical viewpoint, in particular in terms of geometry of Minkowski

spacetime. Physicists will rightfully have a different perspective on many of these points.

For a detailed mathematical reference, see [3, Ch. 6] for a formal development of Minkowski

geometry and special relativity. For a (physics) text containing both mathematical and phys-

ical elements, see [4, Ch. 4]. Furthermore, on the physics side, many elementary references

to the topics touched upon here are widely available on the Internet.

1. Minkowski Geometry

The postulates for special relativity were first formulated by Albert Einstein in 1905.1

Quoting Nobelprize.org [2], Einstein’s postulates state that:

(1) The principle of relativity: The laws of physics are the same in all inertial frames

of reference.

(2) The constancy of speed of light in vacuum: The speed of light in vacuum has

the same value c in all inertial frames of references.

From these postulates and various physical considerations, Einstein was able to derive many

mind-blowing consequences. For instance, two observers moving at different velocities will

1Unfortunately, here we are ignoring vast amounts of physics history which eventually led to this point; see,
for instance, [1, 5] for some basic summaries.
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perceive lengths of objects differently. These results had a profound effect on modern physics

and on the way physicists viewed the world.

On the mathematical side, a major contribution came from Hermann Minkowski, who in

1908 gave a mathematical formulation of special relativity in terms of differential geometry.

Aside from providing a rigorous mathematical model for the universe under special relativity,

Minkowski’s viewpoint was also important because it would later be extended by Einstein

into the theory of general relativity.

1.1. Minkowski Spacetime. Minkowski’s mathematical model melded “time” and “space”

into a single entity “spacetime”. More specifically, this spacetime is modeled by2

R4 := {(t, x, y, z)|t, x, y, z ∈ R},

for which we can naively think of the first component as the time component and the re-

maining three components as the spatial components.

Now, the description of spacetime as the set of 4-tuples (t, x, y, z) is philosophically not

so accurate. In light of the relativity principle, all inertial reference frames, or coordinate

systems in mathematical lingo, should be treated the same. In other words, since there

should not be a single preferred system of coordinates, we should not privilege the Cartesian

coordinates t, x, y, z, as in the above. Thus, the mathematical object for describing spacetime

should not just be R4, but instead this R4 “modulo coordinate systems”.

The notion for capturing this coordinate-independent object is precisely that of a (dif-

ferential) manifold. As a result, we can formally define the Minkowski universe as R4, but

viewed as a 4-dimensional manifold.3

Remark. The above should be contrasted with Newtonian theory, for which space itself can

be modelled by the manifold R3 (modulo coordinate systems), and for which time is similarly

described by R modulo coordinates. The difference, however, is that the Newtonian theory

posits a clear split between space and time, whereas in special relativity, space and time are

combined into a single aggregate object R4.

Next, recall that in the classical Newtonian setting, the squared distance between two

points in space is the Euclidean distance:

d2
E((x1, y1, z1), (x2, y2, z2)) := (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

2There are some caveats; see further below.
3A manifold is, roughly, an object that near each point “looks like” a copy of Rn. While R4 trivially satisfies
this characterization, the pedagogical point here is that this manifold description of R4 does not make any
particular coordinate system more special than any other.
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In Minkowski spacetime, an analogous “squared distance” is constructed on R4, except that

we flip the sign of the time component :4

d2
M((t1, x1, y1, z1), (t2, x2, y2, z2))

:= −(t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Remark. We note that although d2
E and d2

M are defined above using special fixed coordinates,

both can in fact also be expressed in a coordinate-independent manner.

Since we would like to take derivatives, we wish to state the above in a differential form.

In the Newtonian setting, this is captured by the Euclidean metric on R3:

gE := dx2 + dy2 + dz2.

More explicitly, given two tangent vectors about some point in space,

v = (vx, vy, vz), w = (wx, wy, wz),

their inner product with respect to gE is

gE(v, w) = vxwx + vywy + vzwz,

that is, the standard dot product in 3 dimensions.5

On the other hand, the metric on R4 corresponding to d2
M is

gM := −dt2 + dx2 + dy2 + dz2.

In other words, given two tangent vectors about a point in spacetime,

v = (vt, vx, vy, vz), w = (wt, wx, wy, wz),

we measure their “inner product” with respect to this Minkowski metric as

gM(v, w) = −vtwt + vxwx + vywy + vzwz.

Thus, we formally define Minkowski spacetime to be the manifold-and-metric pair (R4, gM).

This geometric object describes the universe as modeled by special relativity.6 Consequently,

the mathematics behind special relativity is precisely the study of this Minkowski geometry.

Because of this change in sign in the “time” component, Minkowski geometry has vastly

different properties compared to the more familiar Euclidean geometry that is associated

with classical Newtonian physics.

4Since we are more concerned with the mathematical aspects here, we simplify notations by assuming units
such that the speed of light is 1.
5We remark that dE can be recovered from gE by integrating along curves.
6This is not entirely accurate, as in addition to (R4, gM ), one also has a time orientation, that is, a way of
distinguishing between “future” and “past” directions.
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1.2. Causal Character. In contrast to the Euclidean metric and distance, which are always

positive-definite, the Minkowski product gM(v, v) no longer has a definite sign. This lends

itself to the notion of the causal character of a direction:

• A tangent vector v is timelike iff gM(v, v) < 0.

• v is spacelike iff either gM(v, v) > 0 or v = 0.

• v is null, or lightlike, iff gM(v, v) = 0 and v 6= 0.

Examples of each type of vector can be found in Figure 1. In particular, the set of all null

directions from the origin form a double cone about the origin (represented by the dotted

lines), called the light, or null, cone. Directions lying within the light cone are timelike, while

directions lying in the exterior are spacelike.

t

x, y, z

timelike

null null

spacelike

spacelike

Figure 1. Timelike, spacelike, and null directions about the origin. For visual
clarity, the three spatial dimensions are compacted into two dimensions.

This partition into causal characters has physical interpretations as well. A point in

Minkowski spacetime, called an event, represents a single particle at a particular time, while

a timelike curve in R4 represents an observer, that is, a single particle existing throughout

time. Null lines, on the other hand, represent light rays.

Note these prescriptions of observers and of timelike directions being within the light cone

automatically imply that objects cannot travel faster than the speed of light. Furthermore,

this leads to the basic tenets of causality : an event A at some time t > 0 can be affected

by an event O at the origin if and only if A lies in the (future) null cone centered at O, or

equivalently, O and A are connected by a timelike curve.
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1.3. Inertial Coordinates. Recall the principle of relativity states that the laws of physics

should not change in any inertial, or nonaccelerating, frame of reference. Since the physical

content is given through the Minkowski metric gM , the relativity principle can thus be

formulated as follows: if one were to change from the usual Cartesian coordinates to another

“inertial” coordinate system (t̄, x̄, ȳ, z̄), then the metric should look the same with respect

to these new coordinates,

gM = −dt̄2 + dx̄2 + dȳ2 + dz̄2.

Another way to view this mathematically is to think of this change of (global) coordinates

as a mapping from R4 to itself,

(t, x, y, z) 7→ Φ(t, x, y, z) := (t̄, x̄, ȳ, z̄).

From this perspective, the preceding statement about the metric being preserved can be

precisely expressed as this map Φ being an isometry, that is, a map that does not change

the geometry of the spacetime (represented by the metric gM).7

So, then, what are some of these isometries, or equivalently, changes of inertial coordinate

systems? The simplest ones are the translations,

(t, x, y, z) 7→ (t+ t0, x+ x0, y + y0, z + z0),

which shift the time and spatial coordinates by a fixed amount. Another family of isometries

are the spatial rotations, which leave t constant but rotate the (x, y, z)-coordinates. Note

that these translations and rotations are also isometries of Euclidean geometry.

What is interesting, and new to Minkowski geometry, are the isometries known as Lorentz

boosts. These can be thought of as spacetime “rotations” involving also the time coordinate.

However, because of this reversal in sign for the time coordinate in gM , the Lorentz boosts

are quite different in nature from the usual rotations.

For simplicity let us consider a boost involving only t and x. This is given by

(t, x, y, z) 7→ (t̄, x̄, ȳ, z̄) =

(
1√

1− v2
(t− vx),

1√
1− v2

(x− vt), y, z
)

,

where v ∈ R satisfies |v| < 1.8 This is the Lorentz transformation that is usually found

in elementary physics texts, and it represents the change of coordinates from a constant

shift in velocity in the x-direction. More specifically, if an observer is moving with velocity

(v, 0, 0) with respect to (t, x, y, z)-coordinates, then the same observer is at rest with respect

to the (t̄, x̄, ȳ, z̄)-coordinates. Analogous boosts can, of course, be defined involving (t, y) or

(t, z), or for any composition of the the preceding three boosts. Finally, any combination of

translations, rotations, and boosts produces yet another isometry.

7In differential geometric language, this means that the pullback Φ∗gM is gM itself.
8Recall that the speed of light is 1 here.
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A natural consequence of this discussion is the fact that, similar to Newtonian mechanics,

there is no absolute notion of velocity in special relativity. Consider, for example, an observer

who is at rest with respect to one inertial coordinate system (t, x, y, z). Then, by a Lorentz

transformation, we can produce another inertial coordinate system in which this observer is

moving at a constant velocity. Since neither coordinate system should be favored over the

other due to the relativity principle, one has no way of determining what is the “absolute

velocity” of the observer, or whether this observer is “at rest”. Indeed, these notions of

“velocity” and “at rest” only exist relative to an observer or a coordinate system.

However, one drastic departure from Newtonian theory is that in special relativity, there

is also no canonical notion of “time elapsed” between two events. Indeed, given two events

P,Q ∈ R4, the elapsed times t(Q) − t(P ) and t̄(Q) − t̄(P ) with respect to two inertial

coordinate systems (t, x, y, z) and (t̄, x̄, ȳ, z̄) need not be the same.9 We will demonstrate

this in more detail in the upcoming discussions on physical consequences.

Remark. Given an observer A, one does have the notion of proper time, i.e., the time lapse

as measured by A itself. If P and Q lie on the curve A, then this proper time is the “length”

of the curve segment between P and Q, measured with respect to the “distance” dM .

1.4. Energy-Momentum. Consider a timelike curve α in R4 satisfying

gM(α′(τ), α′(τ)) = −1.

Here, α′(τ), which we note is a vector with four components, denotes the tangent vector of α

at the point α(τ). One can view this as the Minkowski analogue of arc length parametrization

(or in other words, α is parametrized by proper time).

Suppose now that α represents a particle with mass m. We then define the energy-

momentum vector field for this particle α by

P (τ) := m · α′(τ).

The idea is that both the energy and the momentum contents of the particle are contained

within this single 4-vector field. Roughly speaking, the energy is expressed in the timelike

part of P , while the momentum is expressed in the spacelike part. However, like for the

notions of “velocity” at “at rest” above, this “timelike part” and “spacelike part” can only

be defined relative to an observer.

To be more specific, consider another observer A, which intersects α at α(τ), at which A

measures the energy-momentum of α (see Figure 2). At α(τ), we can decompose P (τ) as

P (τ) = ET +X,

where:

9For example, this can be the case if the coordinate systems are related via a nontrivial Lorentz boost.
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• E ≥ 0 is a number.

• The vector T is unit (with respect to gM), timelike, and points in the direction of A.

• The vector X is (Minkowski) orthogonal to T (i.e., gM(T,X) = 0).10

The number E and the vector X represent the energy and the momentum of α at α(τ), as

measured by A. A quick computation yields that

−m2 = gM(P (τ), P (τ)) = −E2 + gM(X,X) ≥ −E2.

In particular, this implies that m ≤ E, and that the difference E − m arises from the

measured momentum of the particle.

A α

α(τ)

P (τ)T

X

Figure 2. An observer A measuring the energy-momentum of α at the event α(τ).

Again, the above is only defined relative to an observer A. Measuring with respect to a

different observer would result in a different decomposition

P (τ) = E ′T ′ +X ′,

which would yield a different measurement of energy and momentum.

It is natural, though, to measure with respect to the particle α itself. From this frame of

reference, the particle is of course at rest, resulting in the decomposition

P (τ) = m · α′(τ) + 0 = ErTr +Xr.

In particular, we have that

Xr = 0, Tr = α′(τ), Er = m,

i.e., the momentum vanishes, and the rest energy, Er, is just the mass m itself.

10In particular, X is necessarily spacelike.
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Note that throughout this discussion, we had, for mathematical convenience, assumed that

the speed of light is 1. If we were to have worked with a different value c for the speed of

light throughout all the preceding discussions, then the revised expression for the rest energy

would now be given by the infamous formula

Er = mc2.

In other words, from the mass, one can measure the (rest) energy of the particle, and vice

versa. In physics, this is known as mass-energy equivalence.

2. Some Physical Consequences

To conclude our discussions and to further demonstrate the mathematical theory, we show

that many of the seemingly strange physical consequences of Einstein’s postulates can be

quite straightforwardly derived from understanding Minkowski geometry.11

2.1. Simultaneity. The first seemingly counterintuitive consequence is that there is no

absolute notion of two events happening “at the same time”. This is closely tied to the fact

that there is no absolute measure of time or elapsed time.

To demonstrate, we consider two observers, A and B, in Minkowski spacetime. Suppose A

is at rest with respect to some inertial coordinates (t, x, y, z), that is, the curve represented

by A is precisely given by x = y = z = 0. Furthermore, suppose B is moving at a constant

velocity away from A, as depicted in Figure 3.

A : x=y=z=0 B : x̄=ȳ=z̄=0

A0
t = c

B0

t̄ = c̄

Figure 3. Two observers A and B (figure centered about A).

11Of course, there is a certain amount of “cheating” here. The significant achievement is Einstein’s discovery
of these physical consequences and, on the mathematical side, Minkowski’s discovery of the rigorous geometric
model for capturing these observations. However, it is still quite instructive to show just how these physical
observations are naturally manifested in the mathematical theory.
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Consider the event A0—observer A at a given time. What observer A perceives as si-

multaneous to A0 is the hypersurface t = t(A0) := c, or, in coordinate-independent terms,

the hypersurface normal to A at A0 with respect to the Minkowski metric. In particular, in

Figure 3, according to observer A, the event B0 is occurring at the same time as A0.

Next, let us consider the perspective of observer B. For this, we examine new inertial

coordinates (t̄, x̄, ȳ, z̄), with respect to which B is at rest and A is moving at a constant

nonzero velocity. At the event B0, what B perceives as simultaneous is the hypersurface

t̄ = t̄(B0) := c̄, i.e., the hypersurface normal to B at B0, again with respect to Minkowski

metric. Note that t̄ = c̄ intersects observer A at a different point than A0. In summary, these

two observers, moving at different velocities, see different events as occurring simultaneously.

Figure 4 below displays the same information as Figure 3, but with respect to the inertial

coordinates centered about observer B.

A : x=y=z=0 B : x̄=ȳ=z̄=0

A0

t = c

B0
t̄ = c̄

Figure 4. Two observers A and B (figure centered about B).

2.2. Length Contraction. The next consequence, often referred to as Lorentz-Fitzgerald

contraction, is the property that observers moving at different velocities will perceive the

length of an object differently. Consider an observer A and a rod, which are at rest with

respect to each other. Moreover, consider another observer B, which is moving at a constant

velocity away from A and the rod.

This basic setup is sketched in Figure 5. Observers A and B are represented as before,

while the rod is represented by the gray shaded region. The length of the rod as measured

by observer A is represented by the “length” of the bolded blue line segment (t = c) within

the gray area. On the other hand, the length of the rod according to B is represented by

the “length” of the bolded red line segment (t̄ = c̄) within the gray area.

Now, Euclidean intuitions would suggest that the red line would be longer. However, recall

that in Minkowski metric, the time direction has the opposite sign as opposed to the spatial
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A : x=y=z=0 B : x̄=ȳ=z̄=0

A0
t = c

B0

t̄ = c̄

Figure 5. Length contraction: two observers A and B and a rod.

directions. As a result of this, the “tilt” in the dotted red line results in this red segment

having a shorter length than the blue segment. Consequently, observer B’s measurement of

the rod will yield a shorter length than observer A’s measurement.

In summary, this principle of length contraction states that an observer in motion with

respect to an object will perceive that object to have shorter length than an observer at rest

with respect to the object.

2.3. Time Dilation. Another similar phenomenon is that of time dilation: two observers

moving at different velocities will measure different time lapses between two events. To

demonstrate, we consider the situation depicted in Figure 6.

In this figure, we have two (inertial) observers A and B, both carrying clocks that are

synchronized at the event O. First, A measures from its own clock the time elapsed between

events O and A0 on A. This is equal to the proper time elapsed for A, i.e., the Minkowski

length of the bolded blue line segment in Figure 6 connecting O to A0.

Suppose that, at the same time, A also measures the time elapsed on B’s clock. This is

the time elapsed between O and the event B0 on B occuring at the same time (according to

A) as A0. Note this is the proper time elapsed for B, that is, the gM -length of the bolded

red segment between O and B0. Again, Euclidean intuitions would have one believe that the

red line segment would be longer than the blue. However, since both curves are timelike,

and the red line picks up an extra spacelike component, which in the metric has the opposite

sign, the actual effect is that the red line segment is shorter than the blue.

Thus, A will measure less time elapsed on B’s clock, which is in motion relative to A,

than on its own clock, which is relatively at rest.
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A : x=y=z=0 B : x′=y′=z′=0

A0
t = c

B0

O

Figure 6. Time dilation: two observers A and B.

2.4. The Twin Paradox. One of the most widely discussed points of confusion when first

studying special relativity is the twin paradox (though not so appropriately named, since

there is in fact no paradox here). Mathematically speaking, this phenomenon is captured by

the following rather unprovocative observation: two different timelike curves connecting two

events can have different (Minkowski) lengths.12

To explain more concretely, consider the scenario depicted in Figure 7. Suppose one

person, A, stays in bed at home, while a second person, B, gets in a spaceship and blasts

away on a long journey. Eventually, B gets tired of traveling and flies back on the spaceship

to meet A, who is still in bed and has not yet bothered to move. When A and B meet, they

will observe that A has aged more than B.

A B

Figure 7. Twin paradox: A at rest, while B flies off on a spaceship.

Here, the time elapsed for A is given by its proper time, that is, the Minkowski length

of the blue curve segment. Similarly, the time elapsed for B is the length of its red curve

segment. When comparing the two lengths, the idea is similar to the preceding time dilation

setting: the direction of B has an extra spacelike component compared to that of A. Since

12The analogous principle also holds, of course, in Euclidean geometry.
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both curves are timelike, this extra spacelike component yields the opposite sign and makes

the length of the red segment for B smaller than that of the blue segment for A.

So what exactly is the supposed paradox here? Consider now a different coordinate system

(t̄, x̄, ȳ, z̄), in which B is at rest and A now travels in an arc; see Figure 8. If we rerun the

above argument, then it would seem that B, who is now at rest, should age slower than A!

BA

Figure 8. Twin paradox: coordinates adapted to B.

The error hidden in the above argument is that B is not engaged in inertial (i.e., nonac-

celerated) motion, so the (t̄, x̄, ȳ, z̄)-coordinates fail to be inertial, that is,

gM 6= −dt̄2 + dx̄2 + dȳ2 + dz̄2.

In other words, the map from the original coordinates to the barred coordinates fails to

preserve gM . Thus, the preceding (correct) argument fails to hold in the setting of Figure 8,

where the roles of A and B are interchanged.
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