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1. Introduction

The objective of these notes is to provide a detailed discussion of the mathematics be-
hind the eigenvalue placement problem in the control theory of linear systems of ordinary
differential equations (ODEs). More specifically, we will prove that the Kalman rank condi-
tion—also the crucial criterion for exact controllability of such systems—is the assumption
that is needed in order to control the eigenvalues through a linear feedback control.

1.1. Acknowledgments. Section 2 expands upon the material in [2, Sections 5.1–5.2], as
well as corrects a few points in the proof. Section 3 develops rigorous proofs to standard
material synthesized from multiple sources, including [3] and [1, Section 25.2].

1.2. Preliminary Background. Below, we list the minimal linear algebra background that
is required by the subsequent material. First, we recall the notion of eigenvalues of square
matrices and their relation to the corresponding characteristic polynomials:

Definition 1.1. Let n ∈ N, and let A be a real n× n matrix.
• λ ∈ C is an eigenvalue of A iff there exists v ∈ Rn \ {0} such that Av = λv.
• The characteristic polynomial of A is the (degree n) polynomial given by

(1.1) pA : C → C, pA(λ) = det(λIn − A),

where In denotes the n× n identity matrix.

Proposition 1.2. Let n ∈ N, and let A be a real n×n matrix. Then, λ ∈ C is an eigenvalue
of A if and only if λ is a root of the characteristic polynomial of A:

(1.2) det(λIn − A) = pA(λ) = 0.

We will require, in our upcoming development, one additional algebraic property about
characteristic polynomials, namely, the famed Cayley-Hamilton theorem:

Theorem 1.3 (Cayley-Hamilton Theorem). Let n ∈ N, and let A be a real n × n matrix.
Then, A is a root of its own characteristic polynomial—more specifically, if

det(λIn − A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0, a0, . . . , an−1 ∈ R, λ ∈ C,

then

(1.3) An + an−1A
n−1 + · · ·+ a1A+ a0In = 0.

1
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2. Eigenvalue Placement

The eigenvalue placement problem, in our current context, concerns controlling the behav-
iors of linear systems of ODEs with constant coefficients, which mathematically represent
the simplest finite-dimensional dynamical systems. More specifically, in this article, we will
work within the following standard control-theoretic setting:

Assumption 2.1 (Control of ODEs). Fix n ∈ N, and consider the initial value problem

(2.1) x′ = Ax+Bu, x(0) = x0,

where the quantities within are defined as follows:
• The unknown x ∈ C([0, T ];Rn) (where T > 0) is a vector-valued function.
• The initial value is given by x0 ∈ Rn.
• The control is given by a vector-valued function u ∈ C([0, T ];R).
• A and B are constant real-valued n× n and n× 1 matrices.

Remark. The quantities in Assumption 2.1 can be interpreted as follows:
• The vector x(t) ∈ Rn represents the state of our physical system at time t. Note that
x0 is then interpreted as the initial state of the system.

• The value u(t) ∈ R represents a single-input control, imposed by the user at time t,
that is used to steer the behavior of our states x to a desired value.

• The matrix A describes how our state freely evolves in the absence of a control, while
the matrix B describes how our control interacts with our system.

Assumption 2.2 (Feedback Control). Assume u represents a linear feedback control,

(2.2) u := −Kx,

where K is a constant real-valued 1×n matrix. Note by combining the system (2.1) with the
specific feedback control (2.2), our system under consideration now becomes

(2.3) x′ = (A−BK)x, x(0) = x0.

Remark. The intention in Assumption 2.2 is to automate our control so that it evolves based
(only) on the current state of our system. The matrix K provides a constant linear relation
describing how the control is constructed from the current state.

Our main eigenvalue placement problem can then be precisely described as follows:

Problem 2.3 (Eigenvalue placement). Assume the setting described in Assumptions 2.1 and
2.2. Given numbers λ1, . . . , λn, does there exist an 1×n matrix K such that the eigenvalues
of A−BK (including multiplicity) are precisely λ1, . . . , λn?

In other words, Problem 2.3 asks whether we can design our feedback control so that our
resulting system (2.3) achieves any desired set of eigenvalues. In particular, an affirmative
answer would imply that we can fully stabilize our system through a feedback control. More
specifically, by setting all the eigenvalues of A − BK to have negative real parts, then the
solution x of (2.3) can be forced to decay to zero at any desired exponential rate.

Our main result addressing Problem 2.3 is the following:
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Theorem 2.4. Assume the setting described in Assumptions 2.1 and 2.2. In addition, let

(2.4) K :=
[
An−1B An−2B . . . AB B

]
(note K is an n× n matrix), and suppose (A,B) satisfies the Kalman rank condition:

(2.5) rankK = n.

Then, given any λ1, . . . , λn ∈ C that are invariant under complex conjugation—that is, there
exists a permutation σ : {1, . . . , n} ↔ {1, . . . , n} such that

(2.6) λσ(i) = λ̄i, 1 ≤ i ≤ n,

—there exists a real 1 × n matrix K such that the eigenvalues of A − BK are (including
multiplicities) precisely given by λ1, . . . , λn.

Remark. The conjugation invariance condition (2.6) is clearly necessary, since the character-
istic polynomial for A−BK has real coefficients, which can only happen its roots λ1, . . . , λn

satisfy (2.6). In particular, note that (2.6) holds whenever λ1, . . . , λn ∈ R, or more generally,
when any non-real λi can be paired with its conjugate λσ(i) := λ̄i.

Remark. Observe that the Kalman condition (2.5) required for Theorem 2.4 is precisely the
criterion that is needed for the system (2.1) to be exactly controllable.

2.1. Proof of Theorem 2.4. This subsection is dedicated to the proof of Theorem 2.4.
Throughout, we will always assume that the hypotheses of Theorem 2.4 hold.

2.1.1. Controllable Canonical Form. First, let d0, . . . , dn−1 ∈ R (recall (2.6)) satisfy

(2.7)
n∏

i=1

(λ− λi) := λn + dn−1λ
n−1 + · · ·+ d1λ+ d0, λ ∈ C.

Since the eigenvalues of A− BK are simply the roots of its characteristic polynomial, then
in order to prove Theorem 2.4, it suffices to find K such that following holds,

(2.8) det[λIn − (A−BK)] = λn + dn−1λ
n−1 + · · ·+ d1λ+ d0, λ ∈ C,

with In being the n× n identity matrix. In addition, for convenience, we write

(2.9) K :=
[
k0 . . . kn−1

]
.

The first main step toward proving Theorem 2.4 is to find k0, . . . , kn−1 so that (2.8) holds,
but only in the following restricted class of systems for which A and B are in an especially
simple form that is convenient for our analysis:

Definition 2.5. We say that (A,B) is in controllable canonical form iff

(2.10) A :=


0 1 0 . . . 0

0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

a0 a1 a2 . . . an−1

 , B :=


0

0
...
0

1

 ,

for some constants a0, . . . , an−1 ∈ R.
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Lemma 2.6. Assume in addition that (A,B) is of the form (2.10), for some a0, . . . , an−1 ∈ R.
Then, there exists k0, . . . , kn−1 ∈ R such that (2.8) holds. In other words, Theorem 2.4 holds
whenever (A,B) is additionally assumed to be in controllable canonical form.

Proof. We choose k0, . . . , kn−1 as follows:

(2.11) ki := di + ai, 0 ≤ i < n.

For A,B,K satisfying (2.9) and (2.10), we have

A−BK =


0 1 0 . . . 0

0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

−d0 −d1 −d2 . . . −dn−1


As a result, the characteristic polynomial of A−BK is given by

(2.12) det[λIn − (A−BK)] = det


λ −1 0 . . . 0

0 λ −1 . . . 0
... ... ... . . . ...
0 0 0 . . . −1

d0 d1 d2 . . . λ+ dn−1

 .

To evaluate the right-hand determinant in (2.12), we sum down its first column:

det[λIn − (A−BK)] = λ det


λ −1 . . . 0
... ... . . . ...
0 0 . . . −1

d1 d2 . . . λ+ dn−1

+ (−1)nd0 det


−1 0 . . . 0

λ −1 . . . 0
... ... . . . ...
0 0 . . . −1



= λ det


λ −1 . . . 0
... ... . . . ...
0 0 . . . −1

d1 d2 . . . λ+ dn−1

+ d0.

Notice the determinant on the right-hand side is of the same form as before, but whose
dimensions are one smaller. Repeating the above process again (assuming n > 2) yields

det[λIn − (A−BK)] = λ2 det


λ −1 . . . 0
... ... . . . ...
0 0 . . . −1

d2 d3 . . . λ+ dn−1

+ d1λ+ d0,

and by iterating inductively down to a 1× 1 matrix, we hence have

det[λIn − (A−BK)] = λn−1 det[λ+ dn−1] + dn−2λ
n−2 + · · ·+ d1λ+ d0

= λn + dn−1λ
n−1 + · · ·+ d1λ+ d0,

as desired. This completes the proof of the lemma. �
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2.1.2. Change of Basis. We now return to the case of general (A,B) satisfying the Kalman
condition (2.5). Here, the strategy is to apply a change of basis to transform our system into
controllable canonical form, so that Lemma 2.6 can be applied. Once this is accomplished,
then Theorem 2.4 in the general case follows from reversing this change of basis.

Lemma 2.7. There exists an invertible n × n real matrix P such that (PAP−1, PB) is in
controllable canonical form, that is, (PAP−1, PB) satisfies (2.10).

Proof. Let a0, . . . , an−1 ∈ R denote the coefficients of the characteristic polynomial of A:

(2.13) det(λI − A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0.

We set Ā and B̄ (representing our desired controllable canonical form) to be

(2.14) Ā :=


0 1 0 . . . 0

0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

a0 a1 a2 . . . an−1

 , B̄ :=


0

0
...
0

1

 .

In addition, let K be the Kalman matrix (2.4), and set

(2.15) K̄ :=
[
Ān−1B̄ Ān−2B̄ . . . ĀB̄ B̄

]
, P := K̄K−1.

(Notice that K−1 exists due to (2.5).) To prove the lemma, it then suffices to show

(2.16) Ā = PAP−1, B̄ = PB.

First, we compute K̄, which amounts to computing ĀiB̄ for each 1 ≤ i < n:

ĀB̄ =


0
...
0

1

an

 , Ā2B̄ =


0
...
1

an−1

an−2 + a2n−1

 , . . . .

Continuing inductively, we see that K̄ is lower triangular, with 1’s along the diagonal:

(2.17) K̄ =


1 0 . . . 0

b2,1 1 . . . 0
... ... . . . ...

bn,1 bn,2 . . . 1

 ,

where the bi,j’s (1 ≤ j < i ≤ n) can be explicitly computed but are not needed here.
Now, since B is the last column of K, then K−1B must give the last column of In, hence

combining this with (2.17) results in the following:

K−1B =


0
...
0

1

 , PB = K̄K−1B =


0
...
0

1

 .
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In particular, this proves the second part of (2.16) relating B and B̄.
For A, we first note that

(2.18) AK =
[
AnB An−1B . . . AB

]
.

Since An−1B, . . . , AB are precisely the columns 1, . . . , n− 1 of K, then

(2.19) K−1
[
An−1B| . . . |AB

]
=


1 0 . . . 0

0 1 . . . 0
... ... . . . ...
0 0 . . . 1

0 0 . . . 0

 ,

with the right-hand side being columns 1, . . . , n− 1 of In. By the Cayley-Hamilton theorem,
A solves its characteristic polynomial (the right-hand side of (2.13), with A replacing λ):

AnB = −an−1A
n−1B − · · · − a1AB − a0B.

Since the right-hand side of the above is a linear combination of columns of K, then K−1AnB

is the linear combination of the corresponding columns of In:

K−1AnB = −an−1


1
...
0

0

− · · · − a1


0
...
1

0

− a0


0
...
0

1

(2.20)

=


−an−1

...
−a1
−a0

 .

Thus, combining (2.18)–(2.20), we conclude that

(2.21) K−1AK =


−an−1 1 0 . . . 0

−an−2 0 1 . . . 0
... ... ... . . . ...

−a1 0 0 . . . 1

−a0 0 0 . . . 0

 .

Now, repeating the computations in the proof of Lemma 2.6, the characteristic polynomial
of Ā can be explicitly computed and is identical to that of A:

det(λI − Ā) = det


λ −1 0 . . . 0

0 λ −1 . . . 0
... ... ... . . . ...
0 0 0 . . . −1

a0 a1 a2 . . . λ+ an−1


= λn + an−1λ

n−1 + · · ·+ a1λ+ a0.
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Thus, repeating the computations leading to (2.21), but with Ā in the place of A, yields

K̄−1ĀK̄ =


−an−1 1 0 . . . 0

−an−2 0 1 . . . 0
... ... ... . . . ...

−a1 0 0 . . . 1

−a0 0 0 . . . 0


= K−1AK.

Rearranging the above and recalling the second part of (2.15) yields

Ā = K̄K−1AKK̄−1

= PAP−1,

which is the first part of (2.16), hence proving the lemma. �

To complete the proof of Theorem 2.4 in general, we first let P denote the matrix obtained
from Lemma 2.7. Then, by Lemma 2.6, there exists a real 1× n matrix

(2.22) K̄ :=
[
k̄0 . . . k̄n−1

]
such that

(2.23) det[λIn − (PAP−1 − PBK̄)] = λn + dn−1λ
n−1 + · · ·+ d1λ+ d0.

Finally, setting

(2.24) K := K̄P ,

we conclude from (2.22)–(2.24) that

det[λIn − (A−BK)] = det[λIn − (P−1(PAP−1)P − P−1(PB)(K̄P ))]

= detP−1 · det[λIn − (PAP−1 − PBK̄)] · detP
= λn + dn−1λ

n−1 + · · ·+ d1λ+ d0,

and the proof of Theorem 2.4 is now complete.

2.2. Harmonic Oscillator. As an elementary example of eigenvalue placement, we consider
a damped harmonic oscillator modeled by the second-order ODE

y′′ + qy′ + gy = 0, g ∈ (0,∞), q ∈ [0,∞).

More concretely, y can represent the position of an object that is attached to a horizontal
spring and is hence moving back and forth along a line. The parameters g and q capture the
strengths of the forces exerted by the spring and the friction, respectively.

Now, as feedback control, we apply a linear external force to our harmonic oscillator that
is guided only by the current state of the object:

(2.25) y′′ + qy′ + gy = k0y + k1y
′, k0, k1 ∈ R.

(Note the specific form of (2.25) arises from Newton’s second law—the net force applied
should be proportional to the acceleration of the object.)



8 ARICK SHAO

To express (2.25) in the form (2.3), we set

(2.26) x :=

[
y

y′

]
,

from which (2.25) transforms into a 2-dimensional system:

(2.27) x′ = (A−BK)x, A :=

[
0 1

−g −q

]
, B :=

[
0

1

]
, K :=

[
k0 k1

]
.

Note the Kalman matrix K associated with (2.27) is given by

(2.28) K :=
[
AB B

]
=

[
1 0

−q 1

]
,

which clearly has rank 2 and hence satisfies the Kalman condition (2.5). As a result, we can
apply Theorem 2.4 to conclude that there exist k0 and k1 (that is, K) such that A − BK

can achieve any conjugate-invariant pair of eigenvalues λ1, λ2.
Moreover, since (2.25) is a relatively simple system, we can also show the above explicitly.

To see this, observe that direct computations yield

A−BK =

[
0 1

−g − k0 −q − k1

]
,

and hence it suffices to find k0, k1 ∈ R such that

(λ− λ1)(λ− λ2) = det[λI2 − (A−BK)]

= λ2 + λ(q + k1) + (g + k0).

As a result, the following choice of k0, k1 suffice to achieve our desired eigenvalues λ1, λ2:

(2.29) k0 := λ1λ2 − g, k1 := λ1 + λ2 − q.

In particular, by choosing k0 and k1 such that Reλ1,Reλ2 < 0, we can stabilize our system,
so that solutions decay exponentially to the equilibrium state (y, y′) = (0, 0).
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3. Partial Eigenvalue Placement

In this section, we remain within the setting of Assumptions 2.1 and 2.2. Recall Theorem
2.4 implies the eigenvalues of A−BK can be arbitrarily placed via an appropriate choice of
K, provided (A,B) satisfies the Kalman rank condition (2.4)–(2.5).

However, this leaves open the question of whether eigenvalues could be placed even when
(A,B) fails to satisfy the Kalman rank condition. Below, we give a negative overall answer
to this question, but we quantify the number of eigenvalues that can still be controlled.

3.1. Kalman Decomposition. We begin our discussion by recalling the following standard
control theory result, which states that if the Kalman matrix (2.4) does not have full rank,
then there is an appropriate change of basis under which our system (2.3) can be fully
decomposed into controllable and uncontrollable components.

Theorem 3.1. Assume the setting described in Assumptions 2.1 and 2.2. In addition, let K
denote the Kalman matrix defined in (2.4), and suppose

(3.1) m := rankK < n.

Then, there exists an invertible n× n real matrix P such that

(3.2) Ā := PAP−1 =

[
Āc Ā∗
0A Āu

]
, B̄ := PB =

[
B̄c

0B

]
,

where Āc, Āu, Ā∗, and B̄c denote real m×m, (n−m)× (n−m), m× (n−m), and m× 1

matrices, respectively, and where 0A and 0B denote the (n−m)×m and (n−m)× 1 zero
matrices, respectively. Furthermore, (Āc, B̄c) satisfy the Kalman rank condition:

(3.3) rank
[
Ām−1

c B̄c Ām−2
c B̄c . . . ĀcB̄c B̄c

]
= m.

Proof. We begin by choosing a real n× n matrix

(3.4) Q :=
[
Qc Qu

]
,

where Qc is an n×m matrix whose columns are made from m linearly independent columns
of K (one can take any m such columns from K, and in any order), and where the n×(n−m)

matrix Qu is such that the columns of Q form a basis of Rn. We then define P as

(3.5) P := Q−1, P−1 = Q.

Note that since rankK = m, then the range R of Qc coincides with the range of K.
We now claim that AR ⊆ R, i.e., the range of Qc is invariant under A. To see this, we

recall that the columns of Qc are of the form AkB for various 0 ≤ k < n. Thus, the columns
of AQc are of the form AlB for various 1 ≤ k ≤ n. If l < n, then AlB lies in the range of K
and hence in R. Moreover, when l = n, the Cayley-Hamilton theorem ensures that AnB can
be written as a linear combination of A0B, . . . , An−1B, so this lies in R as well. The claim
now follows immediately from the above considerations.

Define now the matrices

(3.6) Ā := PAP−1 :=

[
Āc Ā∗
Ā0 Āu

]
, B̄ := PB :=

[
B̄c

B̄0

]
,
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with Āc, Āu, Ā∗, Ā0 being matrices of dimensions m×m, (n−m)× (n−m), m× (n−m),
(n−m)×m, respectively, and with B̄c, B̄u being matrices of dimensions m× 1, (n−m)× 1,
respectively. Then, direct computations from (3.4)–(3.6) yield[

AQc AQu

]
= AP−1(3.7)

= P−1

[
Āc Ā∗
Ā0 Āu

]
=

[
QcĀc +QuĀ0 QcĀ∗ +QuĀu

]
,

B = P−1

[
B̄c

B̄0

]
= QcB̄c +QuB̄0.

Recall now that AQc has range in R by the preceding claim, and that

AQc = QcĀc +QuĀ0

by (3.7). Since Qu has range outside of R, it follows that Ā0 must vanish. Similarly, since
B has range in R (since B is a column of K), and since

B = QcB̄c +QuB̄0,

it follows that B̄0 must also vanish. The above points now immediately imply (3.2).
Finally, for (3.3), we first obtain from (3.1) that

rank
[
Ān−1B̄ . . . ĀB̄ B̄

]
= rank

[
PAn−1B . . . PAB B

]
(3.8)

= rank(PK)

= m.

Moreover, the decomposition (3.6) yields[
Ān−1B̄ . . . ĀB̄ B̄

]
=

[
Ān−1

c B̄c . . . ĀcB̄c B̄c

0B . . . 0B 0B

]
,

which, when combined with (3.8), yields

(3.9) rank
[
Ān−1

c B̄c . . . ĀcB̄c B̄c

]
= m.

As the Cayley-Hamilton theorem implies each of Ām
c B̄c, . . . , Ā

n−1
c B̄c is a linear combination

of B̄c, ĀcB̄c, . . . , Ā
m−1
c B̄c, then (3.9) implies (3.3), completing the proof. �

3.2. The Main Result. We now state and prove our partial placement property—if the
Kalman matrix (2.4) has rank m < n, then one can impose precisely m eigenvalues:

Theorem 3.2. Assume the setting described in Assumptions 2.1 and 2.2. In addition, let K
denote the Kalman matrix defined in (2.4), and suppose

(3.10) m := rankK < n.

Then, there exist γ1, . . . , γn−m ∈ C—which are also invariant under complex conjugation—
so that the following holds: given any λ1, . . . , λm ∈ C that are invariant under complex
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conjugation, there exists a real 1×n matrix K such that the eigenvalues of A−BK (including
multiplicities) are precisely given by λ1, . . . , λm and γ1, . . . , γn−m.

Proof. Let P , Ā, B̄ be as in the statement of Theorem 3.1, with m as in (3.10). In addition,
let K̄c and K̄u denote unknown 1×m and 1× (n−m) matrices, respectively, and write

(3.11) K̄ :=
[
K̄c K̄u

]
.

Notice that, similar to the proof of Theorem 3.2, it suffices to work with (Ā, B̄) instead of
(A,B), since Ā− B̄K̄ has the same eigenvalues as A−B(K̄P ).

Now, given λ ∈ C, a direct computation using (3.2) yields

det[λIn − (Ā− B̄K̄)] = det

[
λIm − (Āc − B̄cK̄c) −(Ā∗ − B̄cK̄u)

0A λIn−m − Āu

]
(3.12)

det[λIm − (Āc − B̄cK̄c)] · det[λIn−m − Āu].

As a result, the eigenvalues of Ā−B̄K̄ are comprised precisely of the m eigenvalues λ1, . . . , λm

of Āc − B̄cK̄c, along with the n−m eigenvalues of Āu, which we call γ1, . . . , γn−m.
Since Āu is fixed, so are its eigenvalues γ1, . . . , γn−m (which are also invariant under com-

plex conjugation). On the other hand, as Theorem 3.1 implies (Āc, B̄c) satisfies the Kalman
rank condition (3.3), then Theorem 2.4 yields that one can choose K̄c such that λ1, . . . , λm

can be arbitrarily placed. Combining the above concludes the proof of the theorem. �

Remark. In the context of Theorem 3.2, the quantities γ1, . . . , γn−m are called the uncontrol-
lable eigenvalues of (A,B), while λ1, . . . , λm are the controllable eigenvalues of (A,B).

Remark. A weaker variant of Problem 2.3 is to ask whether (2.3) is stabilizable—that is,
whether one can find K such that all the eigenvalues of A−BK have negative real part. In
particular, when (2.3) is stabilizable, then one can construct a feedback control u = −Kx

such that all the solutions to (2.3) decay exponentially to zero.
Note Theorem 3.2 immediately yields a complete solution to this question—(2.3) is stabi-

lizable if and only if all the uncontrolled eigenvalues of (A,B) have negative real part:

(3.13) Re γ1, . . . ,Re γn−m < 0.

Finally, note we have only considered the case of B being an n× 1 matrix—that is, there
is one single (scalar) input u. The case of multiple controls (i.e., B having multiple columns)
is more complicated. For further discussions on this setting, see, for instance, [4, 5].
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