
8 Nonlinear Wave Equations: Vector Field Methods,
Global and Long-time Existence

Thus far, we have, through Theorem 7.2, established local existence and uniqueness for the
quadratic derivative nonlinear wave equation (7.3). One consequence of this result is the
notion of maximal solution (see Corollary 7.6), as well as a basic understanding of what
must happen if such a solution breaks down in finite time (see (7.22) and Corollary 7.7).

What is not yet clear, however, is whether there actually exist solutions that break down
in finite time. Unfortunately, explicit “blow-up” solutions can be easily constructed. For
example, consider the following special case of (7.3):

□ϕ = (∂tϕ)
2, ϕ|t=0 = ϕ0, ∂tϕ|t=0 = ϕ1. (8.1)

If we assume that ϕ depends only on t, and we set y := ∂t, then (8.1) becomes

y′ = −y2.

This is now an ODE that can be solved explicitly:43

∂tϕ(t) = y(t) =
1

t+ 1
C

, ϕ1 = y(0) = C, C ∈ R \ {0}.

In particular, if C < 0, then ∂tϕ (and also ϕ) blows up at finite time T+ = |C|−1.
One can object to the above “counterexample” because the initial data ϕ1, a constant

function, fails to lie in Hs(Rn). However, this shortcoming can be addressed using the local
uniqueness property of Corollary 7.8 (and the remark following its proof). Indeed, suppose
one alters ϕ1 so that it remains a negative constant function on a large enough ball B0(R),
but then smoothly transitions to the zero function outside a larger ball B0(R + 1). Then,
finite speed of propagation implies that within the cone

C := {(t, x) | |x| ≤ R− |t|},

the new solution ϕ is identical to ODE solution. As a result, as long as R is large enough,
this new ϕ will see the same blowup behaviour that was constructed in the ODE setting.

On the other hand, one can still ask whether global existence may hold for sufficiently
small initial data, for which the linear behaviour is expected to dominate for long times.
The main result of this chapter is an affirmative answer for sufficiently high dimensions:

Theorem 8.1 (Small-data global and long-time existence, [Klai1985]). Consider
the initial value problem

□ϕ = Q(∂ϕ, ∂ϕ), ϕ|t=0 = εϕ0, ∂tϕ|t=0 = εϕ1, (8.2)

where ε > 0, and where the profiles of the initial data satisfy ϕ0, ϕ1 ∈ S(Rn). Suppose in
addition that ε is sufficiently small, with respect to n, ϕ0, and ϕ1:

• If n ≥ 4, then (8.2) has a unique global solution.

• Otherwise, letting |T±| be as in Corollary 7.6, the maximal solution ϕ to (8.2) satisfies

– If n = 3, then |T±| ≥ eCε
−1 .

43There is also the trivial solution y ≡ 0.
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– If n = 2, then |T±| ≥ Cε−2.

– If n = 1, then |T±| ≥ Cε−1.

Here, the constants C depend on the profiles ϕi.

The remainder of this chapter is dedicated to the proof of Theorem 8.1. To keep the
exposition brief, we omit some of the more computational and technical elements of the
proof; for more detailed treatments, as well as generalisations of Theorem 8.1, the reader is
referred to [Selb2001, Ch. 7] or [Horm1997,Sogg2008].

Before this, a few preliminary remarks on the theorem are in order.

Remark 8.2. Since the ϕi are assumed to lie in S(Rn), the initial data εϕi lie in every
Hs-space. As a result, all the machinery from the local theory applies, and one can speak of
maximal solutions of (8.2). Furthermore, since these solution curves lie in every Hs-space,
it follows that the maximal solution ϕ is actually a smooth classical solution of (8.2).

Remark 8.3. The uniqueness arguments from Theorem 7.2 also carry over to the current
setting. Thus, we only need to concern ourselves with existence here.

Remark 8.4. Note that although small-data global existence is not proved for low dimen-
sions n < 4 in Theorem 8.1, one does obtain weaker long-time existence results, in the form
of lower bounds on the timespan T± of solutions.

8.1 Preliminary Ideas
From now on, we let ϕ : (T−, T+) × Rn → R be the maximal solution to (8.2), as obtained
from Theorem 7.2 and Corollary 7.6. To prove Theorem 8.1, we must hence show |T±| = ∞.
Moreover, we focus on showing T+ = ∞, since negative times can be handled analogously.

Recall from the previous chapter that the local theory behind (8.2) revolves around
energy-type estimates of the form

E0(t) ≲ E(0) +
∫ t

0

[E(τ)]2dτ , t ∈ [0, T+), (8.3)

where the “energy” E(t) is given in terms of Hs-norms:

E(t) := ∥ϕ(t)∥Hs+1 + ∥∂tϕ(t)∥Hs , s >
n

2
. (8.4)

In particular, both local existence and uniqueness followed from this type of estimate.
A major guiding intuition was that whenever t is small, the nonlinear E2-integral in (8.3)

will not interfere appreciably with the linear evolution. However, since this intuition breaks
down whenever t is large, (8.3) is not enough to ensure E(t) does not blow up at a finite time.
Thus, our local theory, based around (8.3), cannot be sufficient to derive global existence.

Suppose on the other hand that we have a stronger “energy estimate”,

E(t) ≲ E(0) +
∫ t

0

[E(τ)]2
(1 + τ)p

dτ , p > 0, (8.5)

where E(t) now denotes some alternate “energy quantity”. In other words, suppose the
nonlinear estimate comes with an additional decay in time. If p > 1, and hence (1 + τ)−p

is integrable on [0,∞), then the largeness of t is no longer the devastating obstruction it
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once was. In this case, the smallness of E(t) itself is sufficient to show that the nonlinear
evolution is dominated by the linear evolution, regardless of the size of t.

Indeed, using the integrability of (1 + τ)−p results in the estimate

sup
0≤τ≤t

E(τ) ≤ CE(0) + Cp

[
sup

0≤τ≤t
E(τ)

]2

Using a continuity argument, as described in Section 1.4, one can then uniformly bound
E(t) for all t ∈ [0, T+). (In fact, this was essentially demonstrated by the computations in
Example 1.16.) This propagation property for the modified energy for all times is the main
ingredient to improving from local to global existence when n ≥ 4.

On the other hand, when n ≤ 3, the power p that one can obtain will be small enough
such that (1 + τ)−p is no longer integrable. In this case, one can no longer obtain global
existence, but one can still estimate how large t can be before the nonlinear evolution can
dominate. Indeed, the nonlinear effects become non-negligible whenever the integral

∫ t

0

(1 + τ)−pdτ

becomes large.44 In fact, this consideration is directly responsible for the lower bounds on
the times of existence |T±| in Theorem 8.1 when n ≤ 3.

In light of the above, the pressing questions are then the following:

1. What is this modified energy quantity E(t)?

2. How does one obtain this improved energy estimate (8.5) for E(t)?

8.2 The Invariant Vector Fields
Recall that the unmodified energy is obtained by taking s derivatives of ∂ϕ and measuring
the L2-norm. These derivatives ∂t and ∇x are handy in particular because they commute
with the wave operator. In fact, one can view the Hs-energy estimate for ∂ϕ as the L2-energy
estimate applied to both ∂ϕ and “∂∇s

xϕ”.
With this in mind, it makes sense to enlarge our set of derivatives to other operators

that commute with □. We do this by defining the following set of vector fields on Rn+1:

• Translations: The Cartesian coordinate vector fields

∂0 := ∂t, ∂1 := ∂x1 , . . . , ∂n := ∂xn , (8.6)

which generate the spacetime translations of R× Rn.45

• Spatial rotations: The vector fields,

Ωij := xj∂i − xi∂j , 1 ≤ i < j ≤ n, (8.7)

which generate spatial rotations on each level set of t.

• Lorentz boosts: The vector fields,

Ω0j := xj∂t + t∂j , 1 ≤ i ≤ n, (8.8)

which generate Lorentz boosts on R× Rn.
44Whenever this integral is not large, one can still bound E(t) via the above continuity argument.
45More specifically, transport along the integral curves of the ∂α’s are precisely translations in R× Rn.
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• Scaling/dilation: The vector field

S := t∂t +
n∑

i=1

xi∂i, (8.9)

which generates the (spacetime) dilations on R× Rn.

Note that (8.6)-(8.9) define exactly

γn := (n+ 1) +
n(n− 1)

2
+ n+ 1 =

(n+ 2)(n+ 1)

2
+ 1

independent vector fields. For future notational convenience, we order these vector fields in
some arbitrary manner, and we label them as Γ1, . . . ,Γγn .

The main algebraic properties of the Γa’s are given in the following lemma:

Lemma 8.5. The scaling vector field satisfies

[□, S] := □S − S□ = 2□, (8.10)

while any other such vector field Γa ̸= S satisfies

[□,Γa] := □Γa − Γa□ = 0. (8.11)

Furthermore, for any Γb and Cartesian derivative ∂α, we have

[∂α,Γb] =
n∑

β=0

cβαb∂β, cβαb ∈ R. (8.12)

Proof. These identities can be verified through direct computation. In particular, (8.12)
is an consequence of the fact that for any such Γa, its coefficients (expressed in Cartesian
coordinates) are always either constant or one of the Cartesian coordinate functions.

We will use multi-index notation to denote successive applications of various such Γa’s.
More specifically, given a multi-index I = (I1, . . . , Id), where 1 ≤ Ii ≤ γn, we define

ΓI = ΓI1ΓI2 . . .ΓId . (8.13)

Note that since the Γa’s generally do not commute with each other, the ordering of the
coefficients in such a multi-index I carries nontrivial information.

8.2.1 Geometric Ideas

The key intuitions behind the vector fields (8.6)-(8.9) are actually geometric in nature. To
fully appreciate these ideas, one must invoke some basic notions from differential geometry.
We give a brief summary of these observations here.

Remark 8.6. In the context of Theorem 8.1, the properties we will need are the identities
in Lemma 8.5, which can be computed without reference to any geometric discussions. Thus,
the intuitions discussed here are not essential to the proof of Theorem 8.1.

Recall that Minkowksi spacetime can be described as the manifold (R × Rn,m), where
m is the Minkowski metric, i.e., the symmetric covariant 2-tensor on Rn+1 given by

m := −(dt)2 + (dx1)2 + · · ·+ (dxn)2.
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In particular, the Minkowski metric differs from the Euclidean metric on R1+n,

e := (dt)2 + (dx1)2 + · · ·+ (dxn)2,

only by a reversal of sign in the t-component. However, this change in sign makes Minkowski
geometry radically different from the more familiar Euclidean geometry.

Remark 8.7. Minkowski spacetime is the setting for Einstein’s theory of special relativity.

Furthermore, the wave operator □ is intrinsic to Minkowski spacetime. Indeed, □ is the
Laplace-Beltrami operator associated with (Rn+1,m),

□ = mijD2
ij = −∂2t +

n∑

i=1

∂2i ,

where D is the covariant derivative with respect to m. As a result, one would expect that
any symmetry of Minkowski spacetime would behave well with respect to □.

Observe next that any vector field Γa given by (8.6)-(8.8) is a Killing vector field on
Minkowski spacetime, that is, Γa generates symmetries of Minkowski spacetime. In differ-
ential geometric terms, this is given by the condition LΓa

m = 0, where L denotes the Lie
derivative. In other words, transport along the integral curves of Γa does not change the
Minkowski metric, hence such a transformation yields a symmetry of Minkowski spacetime.
Since □ arises entirely from Minkowski geometry, transporting along Γa also preserves the
wave operator. This is the main geometric intuition behind (8.11).

Remark 8.8. In fact, the vector fields (8.6)-(8.8) generate the Lie algebra of all Killing
vector fields on Minkowski spacetime.

On the other hand, the scaling vector field S in (8.9) is not a Killing vector field and
hence does not generate a symmetry of Minkowski spacetime. However, S is a conformal
Killing vector field, that is, S generates a conformal symmetry of Minkowski spacetime.
As this is not a full symmetry, S will not commute with □, but the conformal symmetry
property ensures that this commutator is relatively simple; see (8.10).

8.3 The Modified Energy
Because the vector fields Γa commute so well with □, see (8.10) and (8.11), then Γaϕ also
satisfies a “nice” nonlinear wave equation:

□Γaϕ = Γa□ϕ+ c□ϕ = Γa∂ϕ · ∂ϕ+ c(∂ϕ)2, c ∈ R. (8.14)

As a result, one can also apply energy estimates to control ∂Γaϕ in terms of the initial
data. Moreover, the same observations hold for any number of Γa’s applied to ϕ—for any
multi-index I = (I1, . . . , Id), with 1 ≤ Ii ≤ γn, one has

|□ΓIϕ| ≤ |ΓI□ϕ|+ |[□,ΓI ]ϕ| ≲
∑

|J|≤|I|
|ΓJ□ϕ|, (8.15)

where the sum is over all multi-indices J = (J1, . . . , Jm) with length |J | = m ≤ d = |I|.
Applying (8.2) and then (8.12) to the right-hand side of (8.15), we see that

|□ΓIϕ| ≲
∑

|J|+|K|≤|I|
|ΓJ∂ϕ||ΓK∂ϕ| ≲

∑

|J|+|K|≤|I|
|∂ΓJϕ||∂ΓKϕ|. (8.16)
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This leads us to define the following modified energy quantity for ϕ:46

E(t) =
∑

|I|≤n+4

∥∂ΓIϕ(t)∥L2 . (8.17)

We now wish to show that this satisfies an improved energy estimate (8.5).
Applying the linear estimate (5.26) to ΓIϕ, with s = 0, yields

∥∂ΓIϕ(t)∥L2 ≲ ∥∂ΓIϕ(0)∥L2 +

∫ t

0

∥□ΓIϕ(τ)∥L2dτ .

Summing the above over |I| ≤ n+ 4 and applying (8.16) yields

E(t) ≲ E(0) +
∑

|J|+|K|≤n+4

∫ t

0

∥|∂ΓJϕ(τ)||∂ΓKϕ(τ)|∥L2dτ . (8.18)

Now, since |J |+ |K| on the right-hand side of (8.18) is at most n+4, we can assume without
loss of generality that |J | ≤ n/2 + 2. Using Hölder’s inequality results in the bound

E(t) ≲ E(0) +
∫ t

0

∑

|J|≤n
2 +2

∥∂ΓJϕ(τ)∥L∞
∑

|K|≤n+4

∥∂ΓKϕ(τ)∥L2dτ (8.19)

≲ E(0) +
∫ t

0

∑

|J|≤n
2 +2

∥∂ΓJϕ(τ)∥L∞ · E(τ) · dτ .

8.3.1 Sobolev Bounds with Decay

Previously, we controlled L∞-norms of ϕ by Hs-energies by applying the Sobolev inequality
(7.10). In our setting, this results in the crude bound

∥ϕ(t)∥L∞ ≲
∑

k≤n
2 +1

∥∂kϕ(t)∥L2 ≲
∑

|I|≤n
2 +1

∥ΓIϕ(t)∥L2 . (8.20)

Note we are losing a large amount of information here, since we are considering all the vector
fields Γa, not just the ∂α’s. By leveraging the fact that many of the Γa’s have growing
weights, one sees the possibility of an improvement to (8.20), with additional weights on the
left-hand side that grow. In fact, there does exist such an estimate, which is known as the
Klainerman-Sobolev, or global Sobolev, inequality:

Theorem 8.9 (Klainerman-Sobolev inequality). Let v ∈ C∞([0,∞)× Rn) such that
v(t) ∈ S(Rn) for any t ≥ 0. Then, the following estimate holds for each t ≥ 0 and x ∈ Rn:

(1 + t+ |x|)n−1
2 (1 + |t− |x||) 1

2 |v(t, x)| ≲
∑

|I|≤n
2 +1

∥ΓIv(t)∥L2 . (8.21)

Roughly, the main idea behind the proof of (8.21) is to write ∂α as linear combinations
of the Γa’s, which introduce decaying weights. This can be expressed in multiple ways, with
each resulting in different weights in time and space. One then applies standard Sobolev
inequalities (either on Rn or on Sn−1) and uses the aforementioned algebraic relations to
pick up decaying weights. Moreover, depending on the relative sizes of t and |x|, one can
choose the specific relations and estimates to maximise the decay in the weight. For details,
the reader is referred to either [Selb2001, Ch. 7] or [Horm1997,Sogg2008].

46Recall again that ∂ := (∂t,∇x) denotes the spacetime gradient.
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Remark 8.10. In the context of Theorem 8.1, the Klainerman-Sobolev estimate suggests
decay for ϕ in both t and |x|. Furthermore, the weight on the left-hand side of (8.21)
indicates that ϕ will decay a half-power faster away from the cone t = |x|. For our current
problem, though, we will not need to consider the decay in |x| or in |t− |x||.

In particular, when we apply Theorem 8.9 to (8.19), we obtain

E(t) ≲ E(0) +
∫ t

0

(1 + τ)−
n−1
2

∑

|J|+|K|≤n+4

∥ΓK∂ΓJϕ(τ)∥L2 · E(τ) · ds. (8.22)

Commuting Γa’s and ∂α’s using (8.12) yields the following bound:

Lemma 8.11. For any 0 ≤ t < T+,

E(t) ≲ E(0) +
∫ t

0

[E(τ)]2
(1 + τ)

n−1
2

dτ . (8.23)

Remark 8.12. Note that one must prescribe a high enough number of derivatives in the
definition of E(t), so that after applying (8.21) to the L∞-factor in (8.19), the resulting
L2-norms are still controlled by E(t). This is the rationale behind our choice n+ 4.

8.4 Completion of the Proof
We now apply (8.23) to complete the proof of Theorem 8.1. The main step is the following:

Lemma 8.13. Assume ε in (8.2) is sufficiently small. Then:

• If n = 4, then E(t) ≲ E(0) for all 0 ≤ t < T+.

• If n = 3, then E(t) ≲ E(0) for all 0 ≤ t < min(T+, e
Cε−1

).

• If n = 2, then E(t) ≲ E(0) for all 0 ≤ t < min(T+, Cε
−2).

• If n = 1, then E(t) ≲ E(0) for all 0 ≤ t < min(T+, Cε
−1).

Here, C is a constant depending on ϕ0 and ϕ1.

Let us first assume Lemma 8.13 has been established. Applying the standard Sobolev
embedding (7.10), we can uniformly bound the spacetime gradient of ϕ:

∥∂ϕ(t)∥L∞ ≲
∑

|I|≲n
2 +1

∥∂ΓIϕ(t)∥L2 ≲ E(t). (8.24)

When n ≥ 4, combining Lemma 8.13 and (8.24) results in a uniform bound on ∂ϕ on all of
[0, T+)× Rn. By Corollary 7.7, it follows that T+ = ∞, as desired.

Consider now the case n = 3, and suppose T+ ≤ eCε
−1 . Again, by Lemma 8.13 and

(8.24), one can bound ∂ϕ uniformly on [0, T+) × Rn. Corollary 7.7 then implies T+ = ∞,
resulting in a contradiction. Thus, we conclude T+ ≥ eCε

−1 , as desired.
The remaining cases n < 3 can be proved in the same manner as for n = 3. Thus, to

complete the proof of Theorem 8.1, it remains only to prove Lemma 8.13.
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8.4.1 The Bootstrap Argument

As mentioned before, the proof of Lemma 8.13 revolves around a continuity argument.47

For this, we first fix positive constants A and B such that E(0) := εB ≪ εA. Given a time
t ≥ 0, we make the following bootstrap assumption: 48

BS(t): E(t′) ≤ 2Aε for all 0 ≤ t′ ≤ t.

The goal then is to derive a strictly better version of BS(t).
Suppose first that n ≥ 4, so that (1+τ)−n−1

2 is integrable on all of [0,∞). Then, applying
(8.23) and the bootstrap assumption BS(t), we obtain, for any 0 ≤ t′ ≤ t,

E(t′) ≤ C · E(0) + C

∫ t′

0

[E(τ)]2
(1 + τ)

n−1
2

dτ (8.25)

≤ εCB + 4ε2CA2

∫ ∞

0

1

(1 + τ)
n−1
2

dτ

≤ εCB + ε2C ′A2,

where C ′ > 0 is another constant. Note in particular that if ε is sufficiently small, then
(8.25) implies a strictly better version of BS(t):

E(t′) ≤ εA, 0 ≤ t′ ≤ t.

This implies the desired uniform bound for E(t) and proves Lemma 8.13 when n ≥ 4.
Consider next the case n = 3. The main idea is that the above bootstrap argument still

applies as long as t is not too large. More specifically, assuming BS(t) as before, one sees
that as long as t′ ≤ t ≤ eCε

−1 , the following estimate still holds:

E(t′) ≤ εC ′B + 4ε2C ′A2

∫ eCε−1

0

1

1 + τ
dτ (8.26)

≤ εC ′B + εA · CC ′′A.

Letting C be small, then one once again obtains a strictly improved version of BS(t),

E(t′) ≤ εA, 0 ≤ t′ ≤ t,

as long as t ≤ eCε
−1 for the above C. A continuity argument (which can be localised to a

finite interval) then implies that E(t) is uniformly bounded for all times 0 ≤ t ≤ eCε
−1 .

The proofs of the remaining cases n < 3 resemble that of n = 3, hence we omit the
details here. This completes the proof of Theorem 8.1.

8.5 Additional Remarks
We conclude this chapter with some additional remarks on variants of Theorem 8.1.

8.5.1 Higher-Order Nonlinearities

Theorem 8.1 can be extended to higher-order derivative nonlinearities N (ϕ, ∂ϕ) ≈ (∂ϕ)p for
p > 2. Consider, for concreteness, the cubic derivative nonlinear wave equation

□ϕ = U(∂ϕ, ∂ϕ, ∂ϕ), ϕ|t=0 = εϕ0, ∂tϕ|t=0 = εϕ1, (8.27)
47For background on continuity arguments, see Section 1.4 and in particular Example 1.16.
48Note that the constants A and B depend on the profiles ϕ0 and ϕ1.
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where U is some trilinear form. Since ϕ is presumed small, then the cubic nonlinearity
(∂ϕ)3 should be even smaller than the previous (∂ϕ)2. As a result, one can expect improved
small-data global existence results for (8.27).49

To be more specific, if we rerun the proof of Theorem 8.1, with E the modified energy,
then the nonlinear term contains two L∞-factors. This results in the estimate

E(t) ≲ E(0) +
∫ t

0

[E(τ)]2
(1 + τ)n−1

dτ .

Since (1 + τ)−(n−1) is integrable when n ≥ 3, small-data global existence holds for (8.27)
whenever n ≥ 3. Moreover, when n < 3, one can again obtain lower bounds on |T±|.

This reasoning extends to even higher-order nonlinearities. For instance, for quartic
derivative nonlinear wave equations, small-data global existence holds whenever n ≥ 2.

8.5.2 The Null Condition

Returning to the quadratic case (8.2), small-data global existence now fails for n = 3. For
example, when Q(∂ϕ, ∂ϕ) = (∂tϕ)

2, every solution with smooth, compactly supported data
blows up in finite time; see [John1981]. However, one can still ask whether small-data global
existence holds for quadratic nonlinearities containing some special structure.

The key observation is that for such nonlinear waves, not all derivatives of ϕ decay at the
same rate; in fact, there are “good” directions which decay better the usual (1+t)−n−1

2 -rate.
For instance, this can be seen in the extra weight (1+ |t− |x||) 1

2 in the Klainerman-Sobolev
inequality, (8.21).50 As a result, one could possibly expect improved results when Q has the
special algebraic property that every term contains at least one “good” component of ∂ϕ.

The formal expression of this algebraic criterion is known as the null condition and was
first discovered by Klainerman and Christodoulou; see [Klai1986, Chri1986]. For this, one
first defines the fundamental null forms:

Q0(∂f, ∂g) = −∂tf∂tg +
n∑

i=1

∂if∂ig, (8.28)

Qαβ(∂f, ∂g) = ∂αf∂βg − ∂βf∂αg.

Then, the null condition is simply that Q is a linear combination of the above forms:

Theorem 8.14. Let n = 3, and suppose Q in (8.2) satisfies the above null condition.51

Then, for sufficiently small ε > 0, the solution to (8.2) is global.

We conclude by demonstrating Theorem 8.14 via an example:

Example 8.15. Consider the initial value problem

□ϕ = −Q0(∂ϕ, ∂ϕ), ϕ|t=0 = εϕ0, ∂tϕ|t=0 = εϕ1, (8.29)

and let v := eϕ. A direct computation shows that v must formally satisfy

□v = 0, v|t=0 = eϕ0 , ∂tv|t=0 = ϕ1e
ϕ0 ,

which by Theorem 5.3 has a global solution.
49The local existence theory of the previous chapter also extends directly to (8.27).
50In particular, the proof of Theorem 8.1 did not take advantage of this extra decay.
51Note however that Qαβ can only appear in systems of wave equations.
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One can now recover the solution ϕ for (8.29) by reversing the change of variables,
ϕ = log v. In particular, this solution ϕ exists as long as v > 0. A direct computation using
(5.9) shows that this indeed holds as long as ϕ0 and ϕ1 are small.
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