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1. Introduction

In studying the basic theory of dispersive equations, one encounters various δ-
distributions. For example, there is the following well-known fact:

Proposition 1. Suppose we have a solution to the free Schrödinger equation,

i∂tu+ ∆u = 0, u : R1+n → C,(1)

which also satisfies the initial condition

u(0) := u|t=0 = f , f : Rn → C.(2)

If f is in a sufficiently nice space, say S(Rn), then for any (τ, ξ) ∈ R1+n,

ũ(τ, ξ) = δ(τ − |ξ|2)f̂(ξ),(3)

where f̂ denotes the Fourier transform (in Rn) of f , and where ũ denotes the
spacetime Fourier transform (in Rn+1) of u.

Another common fact, for those who have some experience with bilinear esti-
mates, is the following convolution identity:

Proposition 2. Suppose u and v are solutions of (1), with initial data

u(0) = f , v(0) = g,(4)

as in (2). If f and g are in sufficiently nice spaces, then for any (τ, ξ) ∈ R1+n,

(ũ ∗ ṽ)(τ, ξ) =

∫
Rn
δ(τ − |ξ − η|2 − |η|2)f̂(ξ − η)ĝ(η)dη.(5)

Although much of the dispersive equations literature applies these facts, the
details behind their derivations, as well as the precise meanings of right-hand sides
of (3) and (5), are often swept under the rug. In this short note, we clarify the
definitions behind Propositions 1 and 2, and we prove these propositions in detail.

Remark. The process we apply here for the Schrödinger equation applies analo-
gously to other dispersive equations, most notably to (half-)wave equations. In the
case of half-waves, one generally replaces τ − |ξ|2 by τ ± |ξ|.

Remark. To prevent from having to deal with pesky factors of 2π from Fourier
and inverse Fourier transforms, we replace throughout the usual Euclidean measure
µm on Rm by (2π)−m/2µm. In particular, we set

(2π)−
1
2 dτ ⇒ dτ , (2π)−

n
2 dξ ⇒ dξ,

and similarly for dt and dx. 1

1Hat tip to [4, 5] for these convenient tricks.
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2. Derivation of Proposition 1

This section is focused on the clarification and proof of (3). While we will
make heavy use of distribution theory, in particular for tempered distributions.
Throughout, we will remain with the standard nomenclature for these objects:

• Let S(Rm) denote the space of smooth, rapidly decaying functions on Rm.
• Let S ′(Rm) denote the dual space of tempered distributions on Rm.

Remark. For more on the basic theory of distributions, see, for example, [3, 4, 5].

2.1. Pullback Distributions. Before proving (3), we must first make sense of
pullbacks of distributions, in particular over the δ-distribution.

Consider a differentiable function ψ : R1+n → R, whose level sets form hyper-
surfaces of R1+n. 2 Now, if u ∈ S ′(R), then we wish to make sense of the pullback
of u over ψ, namely, the composition u(ψ) ∈ S ′(R1+n).

To motivate this definition, we recall the coarea formula (in the smooth case):

Theorem 3 (Coarea formula). If F ∈ S(R1+n), and if ψ is as above, then∫
R1+n

F =

∫ ∞
−∞

(∫
{ψ=y}

F

|∇ψ|

)
dy,(6)

where ∇ψ is the gradient of ψ, and where the integrals over the level sets {ψ = y}
are with respect to the induced volume measures.

Proof. In the smooth case here, (6) can be derived using a bit of differential geom-
etry and the change of variables formula; see, for example, [1]. �

Suppose first that u is a nice, smooth function on R. Letting ϕ ∈ S(R1+n), we
can then apply the coarea formula (6) to u(ψ)ϕ, which yields∫

R1+n

u(ψ)ϕ =

∫ ∞
−∞

(∫
{ψ=y}

u(ψ)ϕ

|∇ψ|

)
dy(7)

=

∫ ∞
−∞

u(y)

(∫
{ψ=y}

ϕ

|∇ψ|

)
dy.

This leads to the following definition in the case of distributions:

Definition 4. If u ∈ S ′(R), then we define its pullback u(ψ) ∈ S ′(R1+n) by

〈u(ψ), ϕ〉 :=

〈
u, y 7→

∫
{ψ=y}

ϕ

|∇ψ|

〉
.(8)

To be more clear, the right-hand side represents u applied to the test function

ϕ∗ : R→ C, ϕ∗(y) =

∫
{ψ=y}

ϕ

|∇ψ|
.

Recall that the δ-distribution is defined

δ ∈ S ′(R), 〈δ, ϕ〉 = ϕ(0).(9)

2One is allowed exceptions on sets with some sense of zero measure, though for simplicity, we
will ignore this technical point here. This point is relevant, however, for wave equations.
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Thus, according to our definition (8), we see that

〈δ(ψ), ϕ〉 =

〈
δ, y 7→

∫
{ψ=y}

ϕ

|∇ψ|

〉
=

∫
{ψ=0}

ϕ

|∇ψ|
.(10)

Next, we can further generalize Definition 4 by multiplying by weights:

Definition 5. Let u ∈ S ′(R), and let f : R1+n → C be “sufficiently integrable”
(depending on u). Then we define u(ψ)f ∈ S ′(R1+n) by

〈u(ψ)f, ϕ〉 :=

〈
u, y 7→

∫
{ψ=y}

fϕ

|∇ψ|

〉
.(11)

In particular, with f as before, we have that

〈δ(ψ)f, ϕ〉 =

∫
{ψ=0}

fϕ

|∇ψ|
.(12)

2.2. The Dispersive Relation. Using Definition 5, we can now make full sense
of the right-hand side of (3). 3 In this case, the function ψ is given by

ψ(τ, ξ) = τ − |ξ|2,(13)

for which the gradient is

∇ψ(τ, ξ) = (1,−2ξ), |∇ψ(τ, ξ)| =
√

1 + 4|ξ|2.(14)

As a result, given ϕ ∈ S(R1+n), we have from (12) and (14) that

〈δ(τ − |ξ|2)f̂(ξ), ϕ〉 =

∫
{τ−|ξ|2=0}

f̂(ξ)ϕ(τ, ξ)√
1 + 4|ξ|2

(15)

=

∫
{τ−|ξ|2=0}

f̂(ξ)ϕ(|ξ|2, ξ)√
1 + 4|ξ|2

.

To deal with the integral over the paraboloid τ = |ξ|2, we note that this hypersurface
can be parametrized by the spatial variable ξ ∈ Rn:

ξ 7→ (h(ξ), ξ) = (|ξ|2, ξ).

Recall from calculus and differential geometry the following relation:∫
{τ−|ξ|2=0}

f̂(ξ)ϕ(|ξ|2, ξ)√
1 + 4|ξ|2

=

∫
Rn

f̂(ξ)ϕ(|ξ|2, ξ)√
1 + 4|ξ|2

·
√

1 + |h(ξ)| · dξ(16)

=

∫
Rn
f̂(ξ)ϕ(|ξ|2, ξ)dξ.

From (15) and (16), we obtain an explicit formula for the right-hand side of (3):

〈δ(τ − |ξ|2)f̂(ξ), ϕ〉 =

∫
Rn
f̂(ξ)ϕ(|ξ|2, ξ)dξ.(17)

3The “weight” here is a function F (τ, ξ) that depends only on ξ, i.e., F (τ, ξ) = f̂(ξ).
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2.3. Completion of the Proof. To complete the derivation of (1), we must now
understand the left-hand side of (1). Given ϕ ∈ S(R1+n), we use the distribution
definition of Fourier transforms, along with the fact that u is a function, to obtain

〈ũ, ϕ〉 =

∫
R

∫
Rn
u(t, x)ϕ̃(t, x)dxdt(18)

Since the Schrödinger evolution preserves L2-norms, u(t) has spatial Fourier trans-
form in L2(Rn). Also, û(t) is given by the explicit representation formula 4

û(t, ξ) = eit|ξ|
2

f̂(ξ).(19)

Thus, letting Ft denote the Fourier transform only in time, and focusing on the
inner spatial integral on the right-hand side of (18), we see that

〈ũ, ϕ〉 =

∫
R

∫
Rn
û(t, ξ) · (Ftϕ)(t, ξ) · dξdt(20)

=

∫
R

∫
Rn
eit|ξ|

2

f̂(ξ) · (Ftϕ)(t, ξ) · dξdt.

Next, we expand Ftϕ and apply Fubini’s theorem:

〈ũ, ϕ〉 =

∫
Rn

[∫
R

∫
R
e−it(τ−|ξ|

2) · f̂(ξ)ϕ(τ, ξ) · dτdt
]
dξ.(21)

From here, our desired result follows from the fact that the Fourier transform of
the function t 7→ eiat is δ(· − a). However, let us compute this explicitly.

For each fixed ξ ∈ Rn, we apply a change of variables τ 7→ τ + |ξ|2:

〈ũ, ϕ〉 =

∫
Rn
f̂(ξ)

[∫
R

∫
R
e−itτϕ(τ + |ξ|2, ξ) · dτdt

]
dξ(22)

=

∫
Rn
f̂(ξ)

[∫
R
Ft(ϕξ)(t)dt

]
dξ,

where ϕξ : R→ C is defined ϕξ(τ) = ϕ(τ + |ξ|2, ξ). Since the inner integral on the
right-hand side of (22) is simply the inverse Fourier transform at 0, we obtain

〈ũ, ϕ〉 =

∫
Rn
f̂(ξ)ϕξ(0) · dξ =

∫
Rn
f̂(ξ)ϕ(|ξ|2, ξ)dξ.(23)

Finally, combining (17) and (23) concludes the derivation of (3).

3. Derivation of Proposition 2

We now turn our attention to the identity (5). For this, the main new ingredient
is to recall and understand how convolutions are defined for distributions.

3.1. Convolutions. Recall that given f, g ∈ S(Rm), its convolution is defined by

f ∗ g ∈ S(Rm), (f ∗ g)(x) =

∫
Rm

f(y)g(x− y)dy.(24)

Moreover, convolutions are commutative and associative: if f, g, h ∈ S(Rm), then

f ∗ g = g ∗ f , (f ∗ g) ∗ h = f ∗ (g ∗ h).(25)

These properties motivate the definition of convolutions of distributions.

4For more details on the basic theory of dispersive equations, see, e.g., [6].
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Indeed, given f and g as above, as well as ϕ ∈ S(Rm), we write∫
Rm

(f ∗ g)(x)ϕ(x)dx =

∫
Rm

(f ∗ g)(x)ϕ?(−x)dx,(26)

where ϕ? ∈ S(Rm) is the reflection ϕ?(x) = ϕ(−x). Recalling the definition (24),
as well as the associative property of convolutions, we see that∫

Rm
(f ∗ g)(x)ϕ(x)dx = [(f ∗ g) ∗ ϕ?](0) = [f ∗ (g ∗ ϕ?)](0).(27)

Expanding out the right-hand side, the above becomes∫
Rm

(f ∗ g)(x)ϕ(x)dx =

∫
Rm

f(x)(g ∗ ϕ?)(−x)dx(28)

=

∫
Rm

f(x)

[∫
Rm

g(y)ϕ?(−x− y)dy

]
dx

=

∫
Rm

f(x)

[∫
Rm

g(y)ϕ(x+ y)dy

]
dx

Thus, if we define for each x ∈ Rm the test function

ϕx : Rm → C, ϕx(y) = ϕ(x+ y),(29)

we see that ∫
Rm

(f ∗ g)(x)ϕ(x)dx =

∫
Rm

f(x)

[∫
Rm

g(y)ϕx(y)dy

]
dx.(30)

The formula (30) is in a form that we can extend to distributions. Indeed, the
right-hand side of (30) suggests that we should define u ∗ v ∈ S ′(Rm) as follows:

Definition 6. If u, v ∈ S ′(Rm), then we define u ∗ v by

〈u ∗ v, ϕ〉 := 〈u, x 7→ 〈v, ϕx〉〉.(31)

To be more specific, we first map each x ∈ Rm to ζ(x) = 〈v, ϕx〉, where ϕx is defined
as in (29). We then apply u to this function ζ.

This brings up a technical issue, as there is no guarantee that this ζ in Definition
6 is nice enough that we can feed it into u. Consequently, we require additional
assumptions on u and v so that (31) makes sense in the first place.

The most standard assumption that one makes is that either u or v has compact
support. If v is compactly supported, then (31) works as stated. On the other
hand, if u is compactly supported, then we use the commutative property (25) as
inspiration and define u ∗ v to be v ∗ u, with the latter interpreted as in (31).

In some cases, one can assume less than compact support, but the exact condi-
tions tend to be technical. However, since the distributions δ(τ − |ξ|2) fail to have
compact support, this is in fact an essential point for Proposition 2.

3.2. The Dispersive Convolution. We now look at the left-hand side of (5):

ũ ∗ ṽ = δ(τ − |ξ|2)f̂(ξ) ∗ δ(λ− |η|2)ĝ(η).(32)

To apply Definition 6, we first fix (τ, ξ) ∈ R1+n, and we look at

I(τ, ξ) = 〈δ(λ− |η|2)ĝ(η), ϕ(τ,ξ)〉,(33)

where, like in (29),

ϕ,ϕ(τ,ξ) ∈ S(R1+n), ϕ(τ,ξ)(λ, η) = ϕ(τ + λ, ξ + η).
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However, from (17), we immediately obtain

I(τ, ξ) =

∫
Rn
ĝ(η)ϕ(τ,ξ)(|η|2, η)dη =

∫
Rn
ĝ(η)ϕ(τ + |η|2, ξ + η)dη.(34)

Considering I now as a function, I : R1+n → C, we note that as long as ĝ is in
a nice enough space, for instance S(Rn), then I ∈ S(R1+n). As a result, we can
apply ũ now to I and hence make sense of Definition 6:

〈ũ ∗ ṽ, ϕ〉 = 〈δ(τ − |ξ|2)f̂(ξ), I〉 =

∫
Rn
f̂(ξ)I(|ξ|2, ξ)dη.(35)

From (34) and (35), we see that

〈ũ ∗ ṽ, ϕ〉 =

∫
Rn

∫
Rn
f̂(ξ)ĝ(η)ϕ(|ξ|2 + |η|2, ξ + η)dηdξ.(36)

Applying a change of variables ξ 7→ ξ − η in the right-hand side of (36) yields

〈ũ ∗ ṽ, ϕ〉 =

∫
Rn

∫
Rn
f̂(ξ − η)ĝ(η)ϕ(|ξ − η|2 + |η|2, ξ)dηdξ.(37)

3.3. Completion of the Proof. To complete the derivation of (5), we must work
out its right-hand side. First, some clarification is in order as to how this quantity,

J =

∫
Rn
δ(τ − |ξ − η|2 − |η|2)f̂(ξ − η)ĝ(η)dη,

is defined. To make sense of this, we first consider a fixed η ∈ Rn, and we let

Lη = δ(τ − |ξ − η|2 − |η|2)f̂(ξ − η)ĝ(η) ∈ S ′(R1+n).(38)

(Here, η is fixed, while (τ, ξ) are the variables of the functions that this distribution
acts on.) Then, we can naturally define J as the integral of the Lη’s as follows:

〈J, ϕ〉 :=

∫
Rn
〈Lη, ϕ〉dη.(39)

It remains only to expand 〈J, ϕ〉. For this, we apply (17), (38), and (39):

〈J, ϕ〉 =

∫
Rn
〈δ(τ − |ξ − η|2 − |η|2)f̂(ξ − η)ĝ(η), ϕ〉dη(40)

=

∫
Rn

∫
Rn
f̂(ξ − η)ĝ(η)ϕ(|ξ − η|2 + |η|2, ξ)dξdη.

Comparing (37) with (40) yields (5) and completes the proof.

4. A Bilinear Estimate

As an application of Propositions 1 and 2, we prove a basic bilinear estimate for
solutions of the free Schrödinger equation. The method of proof comes mainly from
[2]; this estimate is also present as part of an exercise in [6].

Theorem 7. Suppose u and v are solutions of (1), with initial data given by (4),
and with f and g in sufficiently nice spaces. Furthermore, assume that:

• f̂ is supported in the region |ξ| ≥ N .
• ĝ is supported in the region |ξ| ≤M .
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If N �M (i.e., N is much larger than M), then the following estimate holds:

‖u · v‖L2
tL

2
x(R1+n) .

M
n−1
2

N
1
2

‖f‖L2
x
‖g‖L2

x(Rn)(41)

The iterated LqtL
r
x-norms are defined in the natural way:

‖u‖LqtLrx(Rn+1) .n

[∫
R
‖u(t)‖qLrx(Rn)dt

] 1
q

.(42)

The obvious adjustments are made when q =∞ or r =∞.
This bilinear estimate provides a slight improvement over what one can derive

using the usual Strichartz estimates for the Schrödinger equations. To see this, we
first note that from Hölder’s inequality and Sobolev embedding, we have

‖uv‖L2
tL

2
x
.n ‖u‖

L4
tL

2n
n−1
x

‖v‖L4
tL

2n
x
.n ‖u‖

L4
tL

2n
n−1
x

‖|∇|
n−2
2 v‖

L4
tL

2n
n−1
x

,(43)

where |∇| is the square root of the negative spatial Laplacian on Rn. (We suppress
the domain R1+n and later Rn for brevity.) Then, applying the standard Strichartz

estimates (see [6]) and recalling the support restriction for f̂ , we obtain

‖uv‖L2
tL

2
x
.n ‖f‖L2

x
‖|∇|

n−2
2 g‖L2

x
.M

n−2
2 ‖f‖L2

x
‖g‖L2

x
.(44)

Consequently, compared to (44), we gain an extra small factor of (M/N)1/2 in

(41), under the support assumptions for f̂ and ĝ. In particular, the Strichartz

estimate resulting in (44) cannot take advantage of the fact that f̂ is nonzero only
for high frequences. One can think of the improvement from the bilinear estimate
as arising from examining more closely how u and v interact with each other in

(spacetime) frequency space. More specifically, since f̂ and ĝ have vastly separated
Fourier supports, the interactions between u and v in the product is limited. For
certain problems, such as the well-posedness of nonlinear Schrödinger equations at
low regularities, this slight gain is crucial; see, e.g., [2].

4.1. The Dual Formulation. We now focus our efforts on proving Theorem 7.
We first reduce (41) to an estimate that we can attack directly.

By Plancherel’s theorem, we see it suffices to prove that

‖ũ ∗ ṽ‖L2
τL

2
ξ
.
M

n−1
2

N
1
2

‖f̂‖L2
ξ
‖ĝ‖L2

ξ
(45)

(As usual, we use τ and ξ to denote the coordinates in frequency space.) However,
in making sense of (45), we already encounter an issue: even though each of the
spatial Fourier transforms û(t) and v̂(t), and hence their (spatial) convolutions
(û ∗ξ v̂)(t), are functions, there is no guarantee a priori that the spacetime Fourier
transform ũ ∗ ṽ must be a function, in particular one in L2.

On the other hand, since ũ ∗ ṽ is a distribution, we can feed it test functions.
Suppose we can establish the following estimate for every ϕ ∈ S(R1+n):

|〈ũ ∗ ṽ, ϕ〉| . M
n−1
2

N
1
2

‖f̂‖L2
ξ
‖ĝ‖L2

ξ
‖ϕ‖L2

τL
2
ξ
.(46)

Then, by the self-duality properties for L2-spaces, and by the fact that the space
of rapidly decreasing smooth functions is dense in L2, it would follow that ũ ∗ ṽ is
represented by an L2-function on R1+n, and also that its L2-norm satisfies (45).
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We now make use of the knowledge we gained from Propositions 1 and 2. More
specifically, by recalling Proposition 2 and (37), we can expand (46) as∣∣∣∣∫

Rn

∫
Rn
f̂(ξ − η)ĝ(η)ϕ(|ξ − η|2 + |η|2, ξ)dηdξ

∣∣∣∣(47)

.
M

n−1
2

N
1
2

‖f̂‖L2
ξ
‖ĝ‖L2

ξ
‖ϕ‖L2

τL
2
ξ
.

Therefore, to prove Theorem 7, it suffices to establish the above estimate (47).

4.2. Further Reductions. Let I denote the left-hand side of (47). Applying

Hölder’s inequality twice and recalling the supports of f̂ and ĝ, we see that

I . ‖ĝ‖L2
ξ

{∫
|η|≤M

[∫
Rd
f̂(ξ − η)ϕ(|ξ − η|2 + |η|2, ξ)dξ

]2
dη

} 1
2

. ‖f̂‖L2
ξ
‖ĝ‖L2

ξ

[∫
|η|≤M

∫
|ξ−η|≥N

|ϕ(|ξ − η|2 + |η|2, ξ)|2dξdη

] 1
2

.

In light of (47), it hence suffices to prove that∫
|η|≤M

∫
|ξ−η|≥N

|ϕ(|ξ − η|2 + |η|2, ξ)|2dξdη . Mn−1

N
‖ϕ‖2L2

τL
2
ξ
.(48)

Given 1 ≤ i ≤ n, we define the domain

Di = {(ξ, η) ∈ Rn × Rn | |η| ≤M , |ξi − ηi| ≥ d−1N}.(49)

where ξi and ηi is the i-th components of ξ and η, respectively. Since

n⋃
i=1

Di ⊇ {(ξ, η) ∈ Rn × Rn | |η| ≤M , |ξ − η| ≥ N},(50)

then to prove (47), and hence (41), we need only to show for each i that∫
Di

|ϕ(|ξ − η|2 + |η|2, ξ)|2dξdη . Mn−1

N
‖ϕ‖2L2

τL
2
ξ
.(51)

For convenience, we will let Ji denote the left-hand side of (51).

4.3. Completion of the Proof. Consider the change of variables

(ξ, η) 7→ (τ = |ξ − η|2 + |η|2, ξ, η′) ∈ R× Rn × Rn−1,(52)

where η′ ∈ Rn−1 denotes all the components of η except for ηi. Since the only
actual change is ηi 7→ τ , it follows that the Jacobian for (52) is given by

Ji =

∣∣∣∣∂(τ, ξ, η′)

∂(ξ, η)

∣∣∣∣ =

∣∣∣∣ ∂τ∂ηi
∣∣∣∣ = 2|(ξi − ηi) + ηi|.(53)

Moreover, since we have on Di that

|ηi| ≤M , |ξi − ηi| ≥ d−1N �M ,(54)

due to the definition (49), it follows that on Di, we have

Ji ' N .(55)
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Returning now to (51), we rewrite its left-hand side using (52):

Ji ≤
∫
|η′|≤M

[∫
R

∫
Rn
J−1i |ϕ(τ, ξ)|2dξdτ

]
dη′.(56)

Finally, from (55), we see that

Ji .
∫
|η′|≤M

dη′ ·N−1
∫
R

∫
Rn
|ϕ(τ, ξ)|2dτdξ . Mn−1

N
‖ϕ‖2L2

τL
2
ξ
.(57)

This completes the proof of (51) and hence (41).
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