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1. Introduction

These notes contain a detailed proof of Hörmander’s inequality for wave equa-
tions in (1 + 3)-dimensions, which can be found in [2]. 1 This estimate was an
essential component in [1, 3], which established small data global existence for
certain nonlinear wave equations in (1 + 3)-dimensions.

Let R1+3 denote Minkowski spacetime, and let ∂0, ∂1, ∂2, ∂3 denote the stan-
dard coordinate vector fields, where “0”, as usual, denotes the time component.
Furthermore, we define the following vector fields, which generate the conformal
symmetries of the Minkowski spacetime R1+3:

• Translation: for any 0 ≤ α ≤ 3, the vector field ∂α.
• Rotations and boosts: for any 0 ≤ α, β ≤ 3, the vector field

Ωαβ = cβx
β∂α − cαxα∂β , cµ =

{
−1 µ = 0,

1 µ > 0.

• Dilation: the vector field

L0 = t∂0 +

3∑
i=1

xi∂i.

Furthermore, we define the following notational conventions:

• Let Γ denote any of the above vector fields.
• Let Γ̇ denote any one of L0 or the Ωαβ ’s (the homogeneous vector fields).

• Let Γ̈ denote any one of Ωij ’s, for 1 ≤ i, j ≤ 3 (the spatial rotations).

We will also use multi-indices to denote compositions of the above vector fields.
The main inequality can now be stated as follows.

Theorem 1. Let F ∈ C2((0,∞)× R3), and suppose u : [0,∞)× R3 → R satisfies

�u = F , u|t=0 ≡ 0, ∂tu|t=0 ≡ 0.

Then, the following inequality holds for any t > 0 and x ∈ R3:

(1) (1 + t+ |x|)|u(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

|ΓαF (s, y)|
1 + s+ |y|

dyds.

1Thanks to Yannis Angelopoulos for the correct references.
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1.1. Preliminaries. Recall that, with u and F as given by the hypotheses of The-
orem 1, we have the following explicit equation for u in terms of F :

(2) u(t, x) =
1

4π

∫
|y|<t

F (t− |y|, x− y)

|y|
dy, t > 0 x ∈ R3.

The integral on the right-hand side is over a disk in R3. Recall in addition the
strong Huygens principle, which implies that if F vanishes on the past null cone
segment starting at (t, x) and ending at t = 0, then u(t, x) is also zero.

If F is spherically symmetric, i.e., F (s, y) = F ∗(s, |y|), then (2) implies that
u is also spherically symmetric, u(t, x) = u∗(t, |x|). Furthermore, from a direct
computation using (2), one can derive the formula

(3) ru∗(t, r) =
1

2

∫ t

0

∫ r+(t−s)

|r−(t−s)|
F ∗(s, ρ)ρdρds.

For details behind this calculation, see [4].
We also require the following algebraic observation: in the region 2|x| ≤ t (which

is in particular away from the null cone |x| = t), we have the bound

t|∂µf(t, x)| .
∑
|α|=1

|Γ̇αf(t, x)|, 0 ≤ µ ≤ 3, 2|x| ≤ t.

The proof relies on explicit representations of (t2 − |x|2)∂µ as linear combinations

of the Γ̇’s, and by the observation that t − |x| ' t in the region 2|x| ≤ t. By

an induction argument and by the observation that the coefficients of the Γ̇’s are
homogeneous, we obtain for any multi-index β the more general estimate

(4) t|β||∂βf(t, x)| .
∑

1≤|α|≤|β|

|Γ̇αf(t, x)|, 2|x| ≤ t.

Again, the reader is referred to [4] for details.
Finally, we will need the following estimate, for which the proof can be found in

[4]: if ϕ ∈ C1(R) has compact support, then

(5)

∫ ∞
0

|ϕ(r)|rdr .
∫ ∞

0

|ϕ′(r)|r2dr.

Now, if f ∈ C1(R3) has compact support, then using polar coordinates,∫
R3

|f(x)|
|x|

dx =

∫
S2

∫ ∞
0

|f(rω)|rdrdω =

∫
S2

∫ ∞
0

|∂rf(rω)| r2drdω.

Switching back to Cartesian coordinates, we have obtained

(6)

∫
R3

|f(x)|
|x|

dx .
∫
R3

|∇xf(x)|dx.

2. From the Homogeneous Estimate

The first step in proving Theorem 1 is to reduce (1) to the following homogeneous
estimate, which holds whenever F is supported away from the origin.

Lemma 2. Assume the hypotheses of Theorem 1, and suppose in addition that

suppF ⊆ {(s, y) | s+ |y| ≥ C},
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for some C > 0. Then, for any t > 0 and x ∈ R,

(7) (1 + |x|)|u(1, x)| .
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (s, y)|
s+ |y|

dyds.

We defer the proof of Lemma 2 until the next section. In this section, we assume
Lemma 2, and we show how Theorem 1 can be obtained from this.

2.1. Scaling Symmetry. Because of the scaling symmetry associated with the
linear wave equation, we can immediately generalize Lemma 2 to the following.

Lemma 3. Assume the hypotheses of Theorem 1, and suppose in addition that

suppF ⊆ {(s, y) | s+ |y| ≥ 1}.
Then, for any t > 0 and x ∈ R,

(8) (t+ |x|)|u(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

|Γ̇αF (s, y)|
s+ |y|

dyds.

Proof. Define the functions ū and F̄ by

ū(t̄, x̄) = u(tt̄, tx̄), F̄ (s̄, ȳ) = t2F (ts̄, tȳ).

Note that F̄ is supported within the region s̄ + |ȳ| ≥ t−1. By scaling symmetry,
�ū = F̄ , with vanishing initial data, and hence by (7),

(1 + t−1|x|)|u(t, x)| = (1 + t−1|x|)|ū(1, t−1x)|

.
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF̄ (s̄, ȳ)|
s̄+ |ȳ|

dȳds̄

Since the Γ̇’s are homogeneous, the numerator of the integrand satisfies

Γ̇αF̄ (s̄, ȳ) = Γ̇α|(s̄,ȳ)[t
2F (ts̄, tȳ)] = t2Γ̇αF (ts̄, tȳ).

Combining the above with the change of variables s = ts̄, y = tȳ, we have

(1 + t−1|x|)|u(t, x)| . t2
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (ts̄, tȳ)|
s̄+ |ȳ|

dȳds̄

. t−1
∑
|α|≤2

∫ t

0

∫
R3

|Γ̇αF (s, y)|
s+ |y|

dyds.

Multiplying both sides by t completes the proof. �

2.2. Translation Symmetry. Next, using Lemma 3 along with the translation
symmetry associated with the linear wave equation, we can handle the remaining
case, in which F is supported near the origin.

Lemma 4. Assume the hypotheses of Theorem 1, and suppose in addition that

suppF ⊆ {(s, y) | s+ |y| ≤ 2}.
Then, the following inequality holds:

(9) (1 + t+ |x|)|u(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

|ΓαF (s, y)|
1 + s+ |y|

dyds.
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Proof. Consider the function u′, defined

u′(t, x) = u(t, x+ 8e1), e1 = (1, 0, 0).

Then, u′ satisfies the wave equation

�u′ = F ′, F ′(t, x) = F (t, x+ 8e1).

In particular, F ′ is now supported in the region s+ |y| ≥ 1, so by (8),

(t+ |x|)|u′(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

Γ̇αF ′(s, y)

s+ |y|
dyds

=
∑
|α|≤2

∫ t

0

∫
R3

Γ̇α|(s,y)[F (s, y + 8e1)]

s+ |y|
dyds.

Now, the operators Γ̇ on the right-hand side are applied at the point (s, y), while

F is applied at the point (s, y + 8e1). To apply Γ̇ at (s, y + 8e1) instead, one picks
up extra terms of the form ∂1F (s, y + 8e1). As a result,

(t+ |x|)|u′(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

ΓαF (s, y + 8e1)

s+ |y|
dyds

.
∑
|α|≤2

∫ t

0

∫
R3

ΓαF (s, y)

s+ |y − 8e1|
dyds.

Since F is supported on s+ |y| ≤ 1, then |y − 8e1| & 1, and hence

s+ |y − 8e1| ' 1 ' 1 + s+ |y|.
Consequently, we have

(t+ |x|)|u′(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

ΓαF (s, y)

1 + s+ |y|
dyds.

Since the above is true for all x ∈ R3, we can change variables and obtain

(t+ |x− 8e1|)|u(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

ΓαF (s, y)

1 + s+ |y|
dyds.

If |x− 8e1| ≤ 1, then 7 ≤ |x| ≤ 9, and by the strong Huygens principle, since F
is supported on s+ |y| ≤ 1, then u(t, x) is nonzero only when t ' |x|. Thus,

t+ |x− 8e1| & t ' 1 ' 1 + t+ |x|
in this case. On the other hand, if |x− 8e1| ≥ 1 and |x| ≤ 16, then

t+ |x− 8e1| & 1 + t ' 1 + t+ |x|.
Finally, if |x− 8e1| ≥ 1 and |x| ≥ 16, then |x− 8e1| ' |x| ' 1 + |x|, and hence

t+ |x− 8e1| ' 1 + t+ |x|.
This covers all possible cases, the combination of which yields

(1 + t+ |x|)|u(t, x)| . (t+ |x− 8e1|)|u(t, x)|

.
∑
|α|≤2

∫ t

0

∫
R3

ΓαF (s, y)

1 + s+ |y|
dyds. �
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2.3. Completion of the Proof. Combining Lemmas 3 and 4, we can complete
the proof of Theorem 1. Consider general F , as in Theorem 1. Using a cutoff
function, we can split F as F = Fh + Fl, where Fh and Fl are supported on the
regions s + |y| ≥ 1 and s + |y| ≤ 2, respectively. Next, write u = uh + ul, where
�uh = Fh, �ul = Fl, and both uh and ul have zero data at t = 0.

By applying Lemma 4, we can write

(1 + t+ |x|)|u(t, x)| ≤ (1 + t+ |x|)|uh(t, x)|+ (1 + t+ |x|)|ul(t, x)|

. (1 + t+ |x|)|uh(t, x)|+
∑
|α|≤2

∫ t

0

∫
R3

|ΓαFl(s, y)|
1 + s+ |y|

dyds.

Furthermore, from the strong Huygens principle, we can see that uh(t, x) is nonzero
only when t + |x| & 1. Combining this with Lemma 3 and the fact that Fh is
supported in the region s+ |y| ≥ 1, we have

(1 + t+ |x|)|uh(t, x)| . (t+ |x|)|uh(t, x)|

.
∑
|α|≤2

∫ t

0

∫
R3

|Γ̇αFh(s, y)|
s+ |y|

dyds

.
∑
|α|≤2

∫ t

0

∫
R3

|Γ̇αFh(s, y)|
1 + s+ |y|

dyds.

Combining the above, we obtain

(1 + t+ |x|)|u(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

|ΓαFh(s, y)|+ |ΓαFl(s, y)|
1 + s+ |y|

dyds.

Finally, since Fh = ϕhF and Fl = ϕlF for some cutoff functions ϕh and ϕl, and
since any derivative of ϕh and ϕl is supported entirely on s+ |y| ' 1, then

(1 + t+ |x|)|u(t, x)| .
∑
|α|≤2

∫ t

0

∫
R3

|ΓαF (s, y)|
1 + s+ |y|

dyds,

as desired. This completes the proof of Theorem 1.

3. The Homogeneous Estimate

It remains to prove the homogeneous estimate of Lemma 2, which is the objective
of this section. To do this, we once again break into cases.

Lemma 5. Assume the hypotheses of Theorem 1, and suppose in addition that

suppF ⊆ {(s, y) | s+ |y| ≥ C}, C > 0.

• If suppF is contained also in the region 2|y| ≤ s, then

(10) (1 + |x|)|u(1, x)| .
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (s, y)|
s

dyds.

• If suppF is contained also in the region 3|y| ≥ s, then

(11) (1 + |x|)|u(1, x)| .
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (s, y)|
|y|

dyds.
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3.1. Proof of Lemma 2. Let us first assume Lemma 5; we use this now to prove
Lemma 2. Let F be as in the hypotheses of Lemma 2, and decompose

F (s, y) = Fa(s, y) + Fb(s, y) = ψ(s−2|y|2)F (s, y) + [1− ψ(s−2|y|2)]F (s, y),

where ψ is a cutoff function defined on R, where Fa is supported in the region
2|y| ≤ s, and Fb is supported in the region 3|y| ≥ s.

Since any derivative of Ψ(s, y) = ψ(s−2|y|2) is supported in the region s ' |y|,

|Γ̇Ψ(s, y)| . (s+ |y|)|∂Ψ(s, y)| . (s+ |y|) 1

s+ |y|
‖ψ′‖L∞ . 1.

where Γ̇ is any one of the homogeneous vector fields. Furthermore, by induction,

|Γ̇αΨ(s, y)| . 1,

for any multi-index α, where the constant depends on ψ itself. As a result,

(12)
∑
|α|≤2

[|Γ̇αFa(s, y)|+ |Γ̇αFb(s, y)|] .
∑
|α|≤2

|Γ̇αF (s, y)|.

Next, we decompose u = ua + ub, where �ua = Fa, where �ub = Fb, and where
both ua and ub have zero initial data at t = 0. By (10) and (11),

(1 + |x|)|u(1, x)| ≤ (1 + |x|)|ua(1, x)|+ (1 + |x|)|ub(1, x)|

.
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αFa(s, y)|
s

dyds+
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αFb(s, y)|
|y|

dyds.

By our assumptions, s ' s + |y| on the support of Fa, and |y| ' s + |y| on the
support of Fb. As a result, the above inequality becomes

(1 + |x|)|u(1, x)| .
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αFa(s, y)|+ |Γ̇αFb(s, y)|
s+ |y|

dyds

.
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (s, y)|
s+ |y|

dyds,

where in the last step, we applied (12). This completes the proof of Lemma 2.

3.2. Proof of (10). It remains to prove the two estimates (10) and (11) that
comprise Lemma 5. We treat the first estimate (10) here.

Since F is supported in 2|y| ≤ s, then by the strong Huygens principle, we need
only consider when |x| ≤ 1. Thus, it suffices to show

(13) |u(1, x)| .
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (s, y)|
s

dyds, |x| ≤ 1.

If 1/2 ≤ |y| < 1, then by using the fundamental theorem of calculus and applying
an appropriate cutoff function, we can estimate

F (1− |y|, x− y) .
∫ 1

0

[|∂sF (s, x− y)|+ |F (s, x− y)|]ds.

On the other hand, if |y| < 1/2, then 1 − |y| ≥ 1/2, and we can apply a similar
estimate as before, but which avoids the region s� 1:

F (1− |y|, x− y) .
∫ 1

1
2

[|∂sF (s, x− y)|+ |F (s, x− y)|]ds.
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Applying the representation formula (2) and the above, we have

|u(1, x)| .
∫ 1

1
2

∫
|y|< 1

2

[|∂sF (s, x− y)|+ |F (s, x− y)|]
|y|

dyds

+

∫ 1

0

∫
1
2≤|y|<1

[|∂sF (s, x− y)|+ |F (s, x− y)|]
|y|

dyds

For the second term on the right-hand side, we note that |y|−1 ' 1, while for the
first term on the right-hand side, we apply (6) and note that s ' 1. This yields

|u(1, x)| .
∫ 1

1
2

∫
|y|< 1

2

[s|∇y∂sF (s, x− y)|+ |∇yF (s, x− y)|]dyds

+

∫ 1

0

∫
1
2≤|y|<1

[|∂sF (s, x− y)|+ |F (s, x− y)|]dyds

.
∫ 1

0

∫
R3

[s|∇y∂sF (s, y)|+ |∂sF (s, y)|+ |∇yF (s, y)|+ |F (s, y)|]dyds

.
∫ 1

0

∫
R3

s2|∇y∂sF (s, y)|+ s|∂sF (s, y)|+ s|∇yF (s, y)|+ |F (s, y)|
s

dyds.

Since F is supported away from the null cone, then by (4),

|u(1, x)| ≤
∫ 1

0

∫
R3

∑
|α|≤2 |Γ̇αF (s, y)|

s
dyds,

which proves (13), and hence (10).

3.3. Proof of (11), if |x| ≥ 1/4. In this case, it suffices to show that

(14) |x||u(1, x)| .
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̇αF (s, y)|
|y|

dyds.

Let M : (0,∞)× [0,∞) be given by

M(s, ρ) = sup
ω∈S2

|F (s, ρω)|.

Applying the Sobolev estimate on S2 yields the bound

M(s, ρ) .
∑
|α|≤2

∫
S2
|Γ̈αF (s, ρω)|dω,

since the spatial rotation vector fields Ωij generate all the directional derivatives
on S2. Integrating the above over s and ρ, we obtain∫ 1

0

∫ ∞
0

M(s, ρ)ρdρds .
∫ 1

0

∫ ∞
0

∫
S2

∑
|α|≤2

|Γ̈αF (s, ρω)|dωρdρds

.
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̈αF (s, y)|
|y|

dyds.

Next, suppose U is the solution of �U(t, x) = M(t, |x|), with zero initial data.
Comparing the representation formula (2) for both u and U , we see that

|x||u(1, x)| ≤ |x|U(1, x), x ∈ R3.
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Moreover, U is spherically symmetric, and applying (3) to U yields

|x||u(1, x)| .
∫ 1

0

∫ r+(1−s)

|r−(1−s)|
M(s, ρ)ρdρds

.
∫ 1

0

∫ ∞
0

M(s, ρ)ρdρds

.
∑
|α|≤2

∫ 1

0

∫
R3

|Γ̈αF (s, y)|
|y|

dyds.

This completes the proof of (14), and hence (11), whenever |x| ≥ 1/4.

3.4. Proof of (11), if |x| ≤ 1/4. In this case, we need only show

(15) |u(1, x)| .
∫ 1

0

∫
|y|<2

[|L0F (s, y)|+ |F (s, y)|]dyds,

since |x| . 1, and since 1 . |y|−1 on the domain |y| < 2.
By our assumptions on suppF , we see that if (1− |w|, x− w) ∈ suppF , then

3|x− w| > 1− |w|, 4|w| > 1− 3|x| > 1

4
.

As a result, (2) yields

|u(1, x)| .
∫

1
16<|w|<1

|F (1− |w|, x− w)|dw.

Moreover, using a cutoff function and the fundamental theorem of calculus,

|u(1, x)| .
∫ 16

15

1

∫
1
16<|w|<1

|∂τ [F (τ(1− |w|), τ(x− w))]|dwdτ

+

∫ 16
15

1

∫
1
16<|w|<1

|F (τ(1− |w|), τ(x− w))|dwdτ

=

∫ 16
15

1

∫
1
16<|w|<1

τ−1|L0F (τ(1− |w|), τ(x− w))|dwdτ

+

∫ 16
15

1

∫
1
16<|w|<1

|F (τ(1− |w|), τ(x− w))|dwdτ

.
∫ 16

15

1

∫
1
16<|w|<1

|L0F (τ(1− |w|), τ(x− w))|dwdτ

+

∫ 16
15

1

∫
1
16<|w|<1

|F (τ(1− |w|), τ(x− w))|dwdτ .

We now adopt the change of variables

s(τ, w) = τ(1− |w|), y(τ, w) = τ(x− w).

The Jacobian of this transformation is

∣∣∣∣ ∂(s, τ)

∂(τ, w)

∣∣∣∣ =

∣∣∣∣∣∣∣∣det


1− |w| −w1

|w| −
w2

|w| −
w3

|w|
x1 − w1 −1 0 0
x2 − w2 0 −1 0
x3 − w3 0 0 −1


∣∣∣∣∣∣∣∣
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=

∣∣∣∣|w| − 1 +
w1w1

|w|
− x1w1

|w|
+
w2w2

|w|
− x2w2

|w|
+
w3w3

|w|
− x3w3

|w|

∣∣∣∣
=
∣∣∣−1 +

x · w
w

∣∣∣ .
Since |x| ≤ 1/4 by assumption, then∣∣∣∣ ∂(s, τ)

∂(τ, w)

∣∣∣∣ ' 1

for all τ and w in our domain of consideration.
Applying this change of variables to the τ -w-integrals and recalling the above

comparison for the associated Jacobian, then we obtain

|u(1, x)| .
∫ 1

0

∫
|y|<2

[|L0F (s, y)|+ |F (s, y)|]dyds,

which is precisely our desired bound (15).
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