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Special Relativity Postulates and Definitions

Einstein’s Postulates

(A. Einstein, 1905) Postulates of special relativity:∗

1 Relativity principle: The laws of physics are the same in
all inertial frames of reference.

2 Speed of light: The speed of light in vacuum has the
same value c in all inertial frames of reference.

Postulates + physical considerations ⇒:

Observers moving at different velocities will perceive
length, time, etc., differently.

A. Einstein (1879–1955)?

∗ Quoted from Nobelprize.org.

? Photo from Nobelprize.org.
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Special Relativity Postulates and Definitions

Minkowski’s Formulation

(1907) Hermann Minkowski:

Geometric formulation of special relativity.

Ideas later extended to general relativity.

Time (R) + space (R3) = spacetime (R4)

More accurately, R4 “modulo coordinate systems.”

Formally, R4 as a (differential) manifold.

(Newtonian theory: R× R3) H. Minkowski (1864–1909)?

? Photo from www.spacetimesociety.org.
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Special Relativity Postulates and Definitions

Euclidean vs. Minkowski

4-d Euclidean space (R4, δ):

Euclidean (square) distance:

d2(p, q) :=
4∑

k=1

(pk − qk)2.

Corresponding differential structure
(Euclidean metric):

δ := dx2 + dy 2 + dz2 + dw 2.

For vectors u, v ∈ R4:

δ(u, v) =
4∑

k=1

ukv k .

Riemannian manifold

4-d Minkowski spacetime (R4, η):

Minkowski (square) “distance”:

d2(p, q) := −(q0−p0)2+

3∑
k=1

(qk−pk)2.

Corresponding differential structure
(Minkowski metric):

η := −dt2 + dx2 + dy 2 + dz2.

For vectors u, v ∈ R4:

η(u, v) = −u0v 0 +

3∑
k=1

ukv k .

Lorentzian manifold
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Special Relativity Postulates and Definitions

Causal Character

Geometry of (R4, η) radically different from that of (R4, δ).

Lack of sign definiteness ⇒ different directions have different meanings.

Causal character: A vector v ∈ R4 is

Spacelike if η(v , v) > 0 or v = 0.

Timelike if η(v , v) < 0.

Null (lightlike) if η(v , v) = 0 and v 6= 0.

Physical interpretations:

Observer: timelike curve.

Light: null lines.

∗ Image by Stib on en.wikipedia.org.
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Special Relativity Consequences

Relativity

Many concepts have no absolute prescription:

Elapsed time, length, energy-momentum.

Only makes sense relative to an observer.

Observer Ō ⇒ coordinates (t̄, x̄ , ȳ , z̄) adapted to Ō.

x̄ = ȳ = z̄ = 0 along Ō.

Observer can measure with respect to these coordinates.

Constant velocity ⇒ inertial coordinate system:

η = −dt̄2 + dx̄2 + dȳ 2 + dz̄2.
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Special Relativity Consequences

Simultaneity

Observers moving at different (constant) velocities will perceive different
events to be “at the same time.”

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=c

B0

t̄=c̄

Coordinates with observer A at rest.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0

t=c

B0
t̄=c̄

Coordinates with observer B at rest.
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Special Relativity Consequences

Length Contraction

Observers moving at different velocities perceive lengths differently.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=c

B0

t̄=c̄

Observers A and B measure a rod (at rest with respect to A).

Shaded region represents rod.

A measures “length” of blue bolded
segment through rod.

B measures “length” of red bolded
segment through rod.

B measures shorter length than A.
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Special Relativity Consequences

Time Dilation

Clocks moving at different velocities observed to tick at different speeds.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=c

B0

O

Observer A measures clocks carried by both A and B.

Both A and B carry clock.

Both clocks synchronised at O.

A measures both clocks at t = c.

A measures less time elapsed on B’s
clock than A’s clock.
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Special Relativity Consequences

Twin Paradox

Different timelike curves between two events will have different lengths.

t

η=−dt2+dx2+dy2+dz2

t̄

η6=−dt̄2+dx̄2+dȳ2+dz̄2

A

B

From A to B: more time elapses for t-observer than for t̄-observer.
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General Relativity Postulates and Definitions

Geometry and Gravity

Special relativity does not
model gravity.

A. Einstein (1879–1955)

(A. Einstein, 1915) General relativity:

Gravity not modeled as a force, but rather
through geometry of spacetime.

Revolutionary idea: gravity ⇔ curvature

Curved spacetime, with gravity represented by spacetime curvature.∗

∗ Image by Johnstone on en.wikipedia.org.

Arick Shao (Imperial College London) Mathematical Relativity 11 / 31

en.wikipedia.org


General Relativity Postulates and Definitions

Spacetimes

Extend notion of spacetime:

(R4, η) 7→ 4-dimensional Lorentzian manifold (M, g).

Geometric content: Lorentzian metric g on M.

g has “same signature (−1, 1, 1, 1)” as η.∗

Study of spacetimes ⇔ Lorentzian geometry:

Analogue of Riemannian geometry.

Lines in R4 7→ geodesics

Can formally make sense of curvature.

∗ At each p ∈ M, we have a bilinear form g |p on TpM of signature (−1, 1, 1, 1).
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General Relativity Postulates and Definitions

Physical Interpretations

Principle of covariance: physical laws are intrinsic properties of the
manifold (M, g), i.e., independent of coordinates on M.

Causal character for tangent vectors:

v is spacelike if g(v , v) > 0 or v = 0.

v is timelike if g(v , v) < 0.

v is null if g(v , v) = 0 and v 6= 0.

Observers: timelike curves.

Free fall: timelike geodesics.

Light: null geodesics.
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General Relativity Postulates and Definitions

Matter Fields

Gravity closely coupled to matter via the Einstein field equations:

Ricg −
1

2
Scg g = T .

Ricg : Ricci curvature associated with g .

Scg : Scalar curvature associated with g .

T : Stress-energy tensor associated with matter field Φ.

Φ: satisfies equations according to its physical theory.

No matter field ⇒ Einstein-vacuum equations (EVE):

Ricg = 0.
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General Relativity The Einstein-Vacuum Equations

Connection to Differential Equations

Question

How do we interpret the EVE?

Write equations in terms of g and a fixed coordinate system on M:

2nd-order quasilinear system of PDE for components of g :

0 = −
1

2

∑
α,β

gαβ(∂α∂βgµν − ∂β∂νgµα − ∂β∂µgνα + ∂µ∂νgαβ) (1)

+
1

2

∑
α,β,γ,δ

gµνg
αβgγδ(∂α∂βgγδ − ∂β∂γgαδ) + F0(g , ∂g).

Q. What is the character of (1)? (elliptic, parabolic, hyperbolic)

Determines what types of problems are reasonable to solve.
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General Relativity The Einstein-Vacuum Equations

Special Coordinates

Bad news: In general, (1) is none of the above.

In special coordinates, (1) becomes hyperbolic.

0 = −
1

2

∑
α,β

gαβ∂α∂βgµν + F1(g , ∂g). (2)

Should be solved as an “initial value problem”.

(1952, Y. Choquet-Bruhat) Solved Einstein-vacuum
equations for short times.

Y. Choquet-Bruhat (b. 1923)?

?Photo by Renate Schmid for the

Oberwolfach Photo Collection

(owpdb.mfo.de).
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General Relativity The Einstein-Vacuum Equations

Well-Posedness

Question

Is the initial value problem well-posed?

Given initial data, can we:

1 Show existence of solution to EVE?

2 Show uniqueness of this solution?

3 Show continuous dependence of solution on initial data?

In other words, given the state of the universe at some time, can we:

(1) + (2): Predict the future/past?

(3): Approximately predict the future/past?
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General Relativity The Einstein-Vacuum Equations

Solving the Equations

Many difficulties behind solving the EVE:

Equations are highly nonlinear.

Initial data must first satisfy (elliptic) constraint equations.

Note: Unlike other PDE, we are solving for the spacetime itself!

Usually, solve for functions on fixed background (e.g., RN).

Here, we solve for (M, g), i.e., the “universe”.

Example

Initial data: Euclidean space (R3, δ)
Solution: Minkowski spacetime (R4, η)
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General Relativity The Einstein-Vacuum Equations

Gravitational Waves

The EVE, in the form (1), are hyperbolic (i.e., “like wave equations”).

(Also, linearisation of EVE about Minkowski spacetime yields wave equations.)

Thus, expect wave-like behaviour for spacetimes (radiation, etc.):

Early prediction of gravitational waves.

Recently observed by LIGO.
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General Relativity The Einstein-Vacuum Equations

Cosmological Constant

Can add extra term to Einstein equations

Ricg −
1

2
Scg g −Λg = T .

Λ ∈ R: cosmological constant.

Taking Λ 6= 0 produces solutions with very different properties.

Λ > 0: De Sitter

Λ < 0: Anti-de Sitter (AdS)
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General Relativity Singular Spacetimes

Cosmology

Assume spacetime is homogeneous and isotropic:

g = −dt2 + a(t) · dΣ.

Independent of space and direction.

Approximates universe at large scales.

Consider Einstein equations, coupled to “dust” matter:

Equations becomes ODE in time.

Given initial data, solve backwards in time ⇒
Friedmann–Lemâıtre–Robertson–Walker (FLRW) spacetime (1920s, 1930s).

After finite time, universe “shrinks to nothing” (i.e., a(t) → 0).

Early model of big bang singularity.
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General Relativity Singular Spacetimes

Schwarzschild Spacetimes

(1916) Schwarzschild spacetimes: spherically
symmetric solution of EVE:

g = −

(
1 −

2m

r

)
dt2 +

(
1 −

2m

r

)−1

dr2

+ r2(dθ2 + sin2 θdϕ2).

First interpretation: region outside a spherical
object with mass m.

Observe: equation for g dies at r = 2m and r = 0.

K. Schwarzschild (1873–1916)?

?Photo from en.wikipedia.org.
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General Relativity Singular Spacetimes

Global Schwarzschild

i+

i−

i0

I+

I−

r=2m

r=2m

r>2m

r=0

r=0

Maximal Schwarzschild spacetime (modulo

spherical symmetry).

Schwarzschild can be interpreted purely as
vacuum spacetime:

r = 2m is not a real singularity (coordinates fail,
but manifold can be extended through r = 2m).

r = 0 is a real singularity (scalar curvature dies).

Maximal extension looks like figure:

Two copies of outer region r > 2m.
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General Relativity Singular Spacetimes

Schwarzschild Black Holes

i+

i−

i0

I+

I−

r=2m

r=2m

r>2m

r=0

r=0

Maximal Schwarzschild spacetime (modulo

spherical symmetry).

r = 2m called the event horizon:

No observer or light ray entering r < 2m can leave.

Any timelike or null geodesic starting in r < 2m
terminates at r = 0 in finite (proper) time.

First models of black holes and singularities.

More general family of vacuum spacetimes:

(1963) Kerr spacetimes: rotating black holes.
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Major Problems in Mathematical Relativity Formation of Singularities

Singularity Theorems

Question

Are singularities an artifact of very special spacetimes?

(1965) Penrose singularity theorem:

Trapped surfaces + other generic conditions ⇒ singularity

Trapped surface: all emanating light rays are pulled closer together.

Example: Schwarzschild, spheres within r < 2m.

Moreover, singularity formation can be dynamic:

(2009) D. Christodoulou: constructed “nice” initial data, from which a trapped
surface eventually forms.
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Major Problems in Mathematical Relativity Formation of Singularities

Cosmic Censorship Conjectures

Question (Open)

What is the nature of general singularities?
How do they form?

(1969, R. Penrose) Conjecture: if a singularity
forms, it should be hidden within a black hole.

Problem (Cosmic Censorship (CC))

Weak cosmic censorship (WCC): singularities hidden
within event horizon, hence unseen from outside.

Strong cosmic censorship (SCC): general relativity is
deterministic (we can predict the future).

R. Penrose (b. 1931)?

?Photo by Festival della Scienza on

en.wikipedia.org.
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Major Problems in Mathematical Relativity Formation of Singularities

Cosmic Censorship, Revised

CC encounters some major obstacles:

1 Neither WCC nor SCC implies the other.

2 Both WCC and SCC are false.

Problem

Under reasonable generic conditions (to be determined), ...

In general, these are open problems.

The correct mathematical formulation is unclear.
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Major Problems in Mathematical Relativity Global Dynamics

Asymptotic States

Question (Open)

Can we describe the long-time dynamics and asymptotics of vacuum
spacetimes, i.e., solutions of EVE?

What is “the end state of the universe”?

Problem (Final State Conjecture)

For general initial data that is “asymptotically flat”, the solution
spacetime should asymptotically settle down to:

Minkowski spacetime, or

One or more Kerr black holes solutions, moving apart from each other.

Very difficult problem ⇒ first consider special cases.
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Major Problems in Mathematical Relativity Global Dynamics

Minkowski Spacetime

First step: global stability of Minkowski spacetime.

Study solutions close to Minkowski spacetime.

(1993) D. Christodoulou, S. Klainerman:

If initial data is “close to Euclidean space” R3, then
the solution of EVE is “close to Minkowski spacetime.”

Solution spacetime “decays to Minkowski” at infinity.

(Theorem and proof: 526-page book.∗)

∗D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski

Space, Princeton University Press, 1994

?Photo from ETH Zurich www.math.ethz.ch.

†Photo from personal website web.math.princeton.edu.

D. Christodoulou (b. 1951)?

S. Klainerman (b. 1950)†
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Major Problems in Mathematical Relativity Global Dynamics

Black Hole Spacetimes

Problem (Stability of Kerr Spacetimes)

Are Schwarzschild and Kerr spacetimes similarly stable?

This is a major open problem.

Significant progress in recent years.

(2016) M. Dafermos, G. Holzegel†, I. Rodnianski

Stability of Schwarschild spacetime for a linearisation of EVE about Schwarzschild.

Linearised solutions decay to (linearised) Kerr spacetime.

† Imperial College London
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The End

The End

Thank you for your attention!
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