A Brief Introduction to Mathematical Relativity

Arick Shao

Imperial College London

Arick Shao (Imperial College London)

(B)

Einstein's Postulates

(A. Einstein, 1905) Postulates of special relativity:*

- Relativity principle: The laws of physics are the same in all inertial frames of reference.
- Speed of light: The speed of light in vacuum has the same value c in all inertial frames of reference.

Postulates + physical considerations \Rightarrow :

• Observers moving at different velocities will perceive length, time, etc., differently.

A. Einstein (1879-1955)*

* Quoted from Nobelprize.org.

* Photo from Nobelprize.org.

Postulates and Definitions

Minkowski's Formulation

(1907) Hermann Minkowski:

- Geometric formulation of special relativity.
- Ideas later extended to general relativity.

Time
$$(\mathbb{R})$$
 + space (\mathbb{R}^3) = spacetime (\mathbb{R}^4)

- $\bullet~$ More accurately, $\mathbb{R}^4~$ "modulo coordinate systems."
- Formally, \mathbb{R}^4 as a (differential) manifold.
- (Newtonian theory: $\mathbb{R} \times \mathbb{R}^3$)

* Photo from www.spacetimesociety.org.

H. Minkowski (1864-1909)*

(人間) トイヨト イヨト

Euclidean vs. Minkowski

4-d Euclidean space (\mathbb{R}^4, δ) :

• Euclidean (square) distance:

$$d^{2}(p,q) := \sum_{k=1}^{4} (p^{k} - q^{k})^{2}.$$

• Corresponding differential structure (*Euclidean metric*):

$$\delta := dx^2 + dy^2 + dz^2 + dw^2.$$

• For vectors $u, v \in \mathbb{R}^4$:

$$\delta(u, v) = \sum_{k=1}^{4} u^{k} v^{k}$$

Riemannian manifold

- 4-d Minkowski spacetime (\mathbb{R}^4, η) :
 - Minkowski (square) "distance":

$$d^{2}(p,q) := -(q^{0}-p^{0})^{2} + \sum_{k=1}^{3} (q^{k}-p^{k})^{2}.$$

• Corresponding differential structure (*Minkowski metric*):

$$\eta := -dt^2 + dx^2 + dy^2 + dz^2.$$

• For vectors $u, v \in \mathbb{R}^4$:

$$\eta(u, v) = -u^0 v^0 + \sum_{k=1}^3 u^k v^k$$

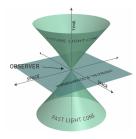
A B A A B A

Lorentzian manifold

Causal Character

Geometry of (\mathbb{R}^4, η) radically different from that of (\mathbb{R}^4, δ) .

• Lack of sign definiteness \Rightarrow different directions have different meanings.



```
Causal character: A vector v \in \mathbb{R}^4 is
```

- Spacelike if η(v, v) > 0 or v = 0.
- Timelike if $\eta(v, v) < 0$.
- Null (lightlike) if $\eta(v, v) = 0$ and $v \neq 0$.

Physical interpretations:

- Observer: timelike curve.
- Light: null lines.

* Image by Stib on en.wikipedia.org.

3

イロト イポト イヨト イヨト

Relativity

Many concepts have no absolute prescription:

- Elapsed time, length, energy-momentum.
- Only makes sense relative to an observer.

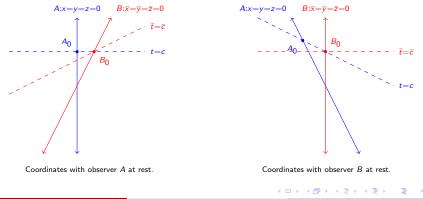
Observer $\bar{O} \Rightarrow$ coordinates $(\bar{t}, \bar{x}, \bar{y}, \bar{z})$ adapted to \bar{O} .

- $\bar{x} = \bar{y} = \bar{z} = 0$ along \bar{O} .
- Observer can measure with respect to these coordinates.
- Constant velocity \Rightarrow inertial coordinate system:

$$\eta = -d\bar{t}^2 + d\bar{x}^2 + d\bar{y}^2 + d\bar{z}^2.$$

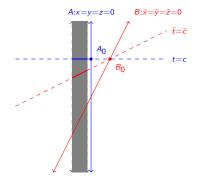
Simultaneity

Observers moving at different (constant) velocities will perceive different events to be "at the same time."



Length Contraction

Observers moving at different velocities perceive lengths differently.



Observers A and B measure a rod (at rest with respect to A).

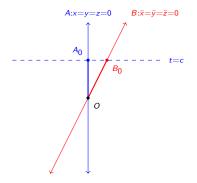
Shaded region represents rod.

- A measures "length" of blue bolded segment through rod.
- *B* measures "length" of red bolded segment through rod.

B measures shorter length than A.

Time Dilation

Clocks moving at different velocities observed to tick at different speeds.



Observer A measures clocks carried by both A and B.

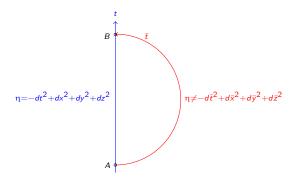
Both A and B carry clock.

- Both clocks synchronised at *O*.
- A measures both clocks at t = c.

A measures less time elapsed on B's clock than A's clock.

Twin Paradox

Different timelike curves between two events will have different lengths.



From A to B: more time elapses for t-observer than for \overline{t} -observer.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

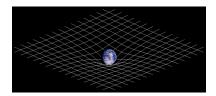
Geometry and Gravity

Special relativity does not model gravity.

A. Einstein (1879-1955)

(A. Einstein, 1915) General relativity:

- Gravity not modeled as a force, but rather through geometry of spacetime.
- Revolutionary idea: $gravity \Leftrightarrow curvature$



Curved spacetime, with gravity represented by spacetime curvature.*

(日) (同) (三) (三)

Image by Johnstone on en.wikipedia.org.

Spacetimes

Extend notion of spacetime:

- $(\mathbb{R}^4, \eta) \mapsto 4$ -dimensional *Lorentzian manifold* (M, g).
- Geometric content: Lorentzian metric g on M.
- g has "same signature (-1, 1, 1, 1)" as η ."

Study of spacetimes \Leftrightarrow *Lorentzian geometry*:

- Analogue of Riemannian geometry.
- Lines in $\mathbb{R}^4 \mapsto \text{geodesics}$
- Can formally make sense of curvature.

* At each $p \in M$, we have a bilinear form $g|_p$ on T_pM of signature (-1, 1, 1, 1).

- 4 回 ト - 4 回 ト

Physical Interpretations

Principle of covariance: physical laws are intrinsic properties of the manifold (M, g), i.e., independent of coordinates on M.

Causal character for tangent vectors:

- v is spacelike if g(v, v) > 0 or v = 0.
- v is timelike if g(v, v) < 0.
- v is null if g(v, v) = 0 and $v \neq 0$.

Observers: timelike curves.

• Free fall: timelike geodesics.

イロト 人間ト イヨト イヨト

• Light: null geodesics.

Matter Fields

Gravity closely coupled to matter via the Einstein field equations:

$$\operatorname{Ric}_{g}-rac{1}{2}\operatorname{Sc}_{g}g=T.$$

- Ricg: Ricci curvature associated with g.
- Sc_g: Scalar curvature associated with g.
- T: Stress-energy tensor associated with matter field Φ .
- Φ : satisfies equations according to its physical theory.

No matter field \Rightarrow *Einstein-vacuum equations (EVE)*:

$$\operatorname{Ric}_{g} = 0.$$

Connection to Differential Equations

Question

How do we interpret the EVE?

Write equations in terms of g and a fixed coordinate system on M:

• 2nd-order quasilinear system of PDE for components of g:

$$0 = -\frac{1}{2} \sum_{\alpha,\beta} g^{\alpha\beta} (\partial_{\alpha} \partial_{\beta} g_{\mu\nu} - \partial_{\beta} \partial_{\nu} g_{\mu\alpha} - \partial_{\beta} \partial_{\mu} g_{\nu\alpha} + \partial_{\mu} \partial_{\nu} g_{\alpha\beta})$$
(1)
+
$$\frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} g_{\mu\nu} g^{\alpha\beta} g^{\gamma\delta} (\partial_{\alpha} \partial_{\beta} g_{\gamma\delta} - \partial_{\beta} \partial_{\gamma} g_{\alpha\delta}) + F_0(g,\partial g).$$

Q. What is the character of (1)? (elliptic, parabolic, hyperbolic)

• Determines what types of problems are reasonable to solve.

(日) (同) (日) (日)

Special Coordinates

Bad news: In general, (1) is none of the above.

In special coordinates, (1) becomes hyperbolic.

$$0 = -\frac{1}{2} \sum_{\alpha,\beta} g^{\alpha\beta} \partial_{\alpha} \partial_{\beta} g_{\mu\nu} + F_1(g,\partial g). \qquad (2$$

- Should be solved as an "initial value problem".
- (1952, Y. Choquet-Bruhat) Solved Einstein-vacuum equations for short times.


```
Y. Choquet-Bruhat (b. 1923)*
```

* Photo by Renate Schmid for the

Oberwolfach Photo Collection

(owpdb.mfo.de).

- 4 同 1 - 4 三 1 - 4 三 1

Well-Posedness

Question

Is the initial value problem well-posed?

Given initial data, can we:

Show existence of solution to EVE?

2 Show uniqueness of this solution?

Show continuous dependence of solution on initial data?

In other words, given the state of the universe at some time, can we:

- (1) + (2): Predict the future/past?
- (3): Approximately predict the future/past?

Solving the Equations

Many difficulties behind solving the EVE:

- Equations are highly nonlinear.
- Initial data must first satisfy (elliptic) constraint equations.

Note: Unlike other PDE, we are solving for the spacetime itself!

- Usually, solve for functions on fixed background (e.g., \mathbb{R}^N).
- Here, we solve for (M, g), i.e., the "universe".

Example

Initial data: Euclidean space (\mathbb{R}^3, δ) Solution: Minkowski spacetime (\mathbb{R}^4, η)

Gravitational Waves

The EVE, in the form (1), are hyperbolic (i.e., "like wave equations").

• (Also, linearisation of EVE about Minkowski spacetime yields wave equations.)

Thus, expect wave-like behaviour for spacetimes (radiation, etc.):

- Early prediction of gravitational waves.
- Recently observed by LIGO.

Cosmological Constant

Can add extra term to Einstein equations

$$\operatorname{Ric}_{g}-\frac{1}{2}\operatorname{Sc}_{g}g-\Lambda g=T.$$

• $\Lambda \in \mathbb{R}$: cosmological constant.

Taking $\Lambda \neq 0$ produces solutions with very different properties.

- $\Lambda > 0$: De Sitter
- $\Lambda < 0$: Anti-de Sitter (AdS)

3 K K 3 K

Cosmology

Assume spacetime is homogeneous and isotropic:

$$g = -dt^2 + a(t) \cdot d\Sigma.$$

- Independent of space and direction.
- Approximates universe at large scales.

Consider Einstein equations, coupled to "dust" matter:

- Equations becomes ODE in time.
- Given initial data, solve backwards in time ⇒ Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime (1920s, 1930s).

After *finite* time, universe "shrinks to nothing" (i.e., $a(t) \rightarrow 0$).

• Early model of *big bang* singularity.

< 47 ▶

Singular Spacetimes

Schwarzschild Spacetimes

(1916) *Schwarzschild spacetimes*: spherically symmetric solution of EVE:

$$g = -\left(1 - \frac{2m}{r}\right)dt^2 + \left(1 - \frac{2m}{r}\right)^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2).$$

First interpretation: region outside a spherical object with mass m.

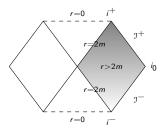
• Observe: equation for g dies at r = 2m and r = 0.

K. Schwarzschild (1873-1916)*

```
* Photo from en.wikipedia.org.
```

- 4 同 6 4 日 6 4 日 6

Global Schwarzschild



Maximal Schwarzschild spacetime (modulo spherical symmetry).

Schwarzschild can be interpreted purely as vacuum spacetime:

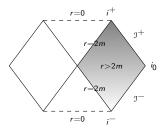
- r = 2m is not a real singularity (coordinates fail, but manifold can be extended through r = 2m).
- r = 0 is a real singularity (scalar curvature dies).

Maximal extension looks like figure:

• Two copies of outer region r > 2m.

> < 3 > < 3 >

Schwarzschild Black Holes



Maximal Schwarzschild spacetime (modulo spherical symmetry).

r = 2m called the *event horizon*:

- No observer or light ray entering r < 2m can leave.
- Any timelike or null geodesic starting in r < 2m terminates at r = 0 in finite (proper) time.

First models of *black holes* and *singularities*.

More general family of vacuum spacetimes:

• (1963) Kerr spacetimes: rotating black holes.

> < 3 > < 3 >

Singularity Theorems

Question

Are singularities an artifact of very special spacetimes?

(1965) Penrose singularity theorem:

- Trapped surfaces + other generic conditions \Rightarrow singularity
- Trapped surface: all emanating light rays are pulled closer together.
- Example: Schwarzschild, spheres within r < 2m.

Moreover, singularity formation can be dynamic:

• (2009) D. Christodoulou: constructed "nice" initial data, from which a trapped surface eventually forms.

- 4 個 ト - 4 三 ト - 4 三 ト

Cosmic Censorship Conjectures

Question (Open)

What is the nature of general singularities? How do they form?

(1969, R. Penrose) Conjecture: if a singularity forms, it should be hidden within a black hole.

Problem (Cosmic Censorship (CC))

- Weak cosmic censorship (WCC): singularities hidden within event horizon, hence unseen from outside.
- Strong cosmic censorship (SCC): general relativity is deterministic (we can predict the future).

R. Penrose (b. 1931)*

* Photo by Festival della Scienza on

en.wikipedia.org.

イロト 不得下 イヨト イヨト

Cosmic Censorship, Revised

CC encounters some major obstacles:

- Neither WCC nor SCC implies the other.
- Both WCC and SCC are false.

Problem

Under reasonable generic conditions (to be determined), ...

In general, these are open problems.

• The correct mathematical formulation is unclear.

Asymptotic States

Question (Open)

Can we describe the long-time dynamics and asymptotics of vacuum spacetimes, i.e., solutions of EVE?

• What is "the end state of the universe"?

Problem (Final State Conjecture)

For general initial data that is "asymptotically flat", the solution spacetime should asymptotically settle down to:

- Minkowski spacetime, or
- One or more Kerr black holes solutions, moving apart from each other.

Very difficult problem \Rightarrow first consider special cases.

(日) (同) (三) (三)

Minkowski Spacetime

First step: global stability of Minkowski spacetime.

• Study solutions close to Minkowski spacetime.

(1993) D. Christodoulou, S. Klainerman:

- If initial data is "close to Euclidean space" ℝ³, then the solution of EVE is "close to Minkowski spacetime."
- Solution spacetime "decays to Minkowski" at infinity.

• (Theorem and proof: 526-page book.*)

*D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski

Space, Princeton University Press, 1994

* Photo from ETH Zurich www.math.ethz.ch.

[†]Photo from personal website web.math.princeton.edu.

D. Christodoulou (b. 1951)*

S. Klainerman (b. 1950)[†]

(日) (同) (三) (三)

Black Hole Spacetimes

Problem (Stability of Kerr Spacetimes)

Are Schwarzschild and Kerr spacetimes similarly stable?

This is a major open problem.

• Significant progress in recent years.

(2016) M. Dafermos, G. Holzegel[†], I. Rodnianski

- Stability of Schwarschild spacetime for a linearisation of EVE about Schwarzschild.
- Linearised solutions decay to (linearised) Kerr spacetime.

[†] Imperial College London

The End

Thank you for your attention!

æ

イロン イヨン イヨン イヨン