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Special Relativity Postulates and Definitions

Einstein's Postulates

(A. Einstein, 1905) Postulates of special relativity:*
@ Relativity principle: The laws of physics are the same in
all inertial frames of reference.

@ Speed of light: The speed of light in vacuum has the
same value c in all inertial frames of reference. )

Postulates + physical considerations =:

@ Observers moving at different velocities will perceive
length, time, etc., differently.
. A. Einstein (1879-1955)*

* Quoted from Nobelprize.org. J

* Photo from Nobelprize.org.
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Special Relativity Postulates and Definitions

Minkowski's Formulation

(1907) Hermann Minkowski:

@ Geometric formulation of special relativity.

@ Ideas later extended to general relativity.

Time (R) + space (R3) = spacetime (R*)

@ More accurately, R* “modulo coordinate systems.”

@ Formally, R* as a (differential) manifold.

@ (Newtonian theory: R x R?) H. Minkowski (1864-1909)*

* Photo from www.spacetimesociety.org. J
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Special Relativity Postulates and Definitions

Euclidean vs. Minkowski

4-d Euclidean space (R%,9):

@ Euclidean (square) distance:
4
=) (p—d"
k=1
@ Corresponding differential structure
(Euclidean metric):
§:=dx* + dy2 + dz* + dw?’.
@ For vectors u,v € R*%:
4
= v
= uve.
k=1

@ Riemannian manifold

4-d Minkowski spacetime (R* n):

@ Minkowski (square) “distance”:
3
—(¢"=p"*+)_(d"—p")*.

k=1

d*(p,q) =

@ Corresponding differential structure
(Minkowski metric):

= —dt® + dx* + dy? + dZ°.

@ For vectors u,v € R*%:
3
nlu,v) = —u®° + Z Uk vk
k=1

@ Lorentzian manifold
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Special Relativity Postulates and Definitions

Causal Character

Geometry of (R* n) radically different from that of (R?,5). J

@ Lack of sign definiteness = different directions have different meanings.

Causal character: A vector v € R* is
@ Spacelike if n(v,v) >0or v=0.
@ Timelike if n(v,v) < 0.
@ Null (lightlike) if n(v,v) =0 and v #0.

Physical interpretations:

@ Observer: timelike curve.

@ Light: null lines.

* Image by Stib on en.wikipedia.org. J
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e T
Relativity

Many concepts have no absolute prescription:

@ Elapsed time, length, energy-momentum.

@ Only makes sense relative to an observer.

Observer O = coordinates (t, X, y, Z) adapted to O.
@ x=y=2=0along O.
@ Observer can measure with respect to these coordinates.

@ Constant velocity = inertial coordinate system:

N =—df 4+ dx* + dy* + dZ°.
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e T
Simultaneity

Observers moving at different (constant) velocities will perceive different
events to be “at the same time.”

Coordinates with observer A at rest. Coordinates with observer B at rest.
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e T
Length Contraction

Observers moving at different velocities perceive lengths differently. J

Shaded region represents rod.
@ A measures “length” of blue bolded
segment through rod.

@ B measures “length” of red bolded
segment through rod.

B measures shorter length than A. J

Observers A and B measure a rod (at rest with respect to A).
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Special Relativity Consequences

Time Dilation

Clocks moving at different velocities observed to tick at different speeds. )

Both A and B carry clock.

@ Both clocks synchronised at O.

@ A measures both clocks at t = c.

A measures less time elapsed on B's
clock than A’s clock.

Observer A measures clocks carried by both A and B.
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Special Relativity Consequences

Twin Paradox

Different timelike curves between two events will have different lengths. )

N=—dt?+dx?+dy2 +dz2 NA—dF2 4+ d2 +dy2 +dz2

A

From A to B: more time elapses for t-observer than for t-observer.
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Postulates and Defiitions
Geometry and Gravity

Special relativity does not (A. Einstein, 1915) General relativity:
model gravity. J

@ Gravity not modeled as a force, but rather
through geometry of spacetime.

@ Revolutionary idea: gravity & curvature

Curved spacetime, with gravity represented by spacetime curvature.™

* Image by Johnstone on en.wikipedia.org. )

A. Einstein (1879-1955)
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e AT
Spacetimes

Extend notion of spacetime:

@ (R*n) +— 4-dimensional Lorentzian manifold (M, g).
@ Geometric content: Lorentzian metric g on M.

@ g has “same signature (—1,1,1,1)" as1.”

v
Study of spacetimes & Lorentzian geometry:
@ Analogue of Riemannian geometry.
@ Lines in R* — geodesics
@ Can formally make sense of curvature.
v
* At each p € M, we have a bilinear form g|, on T,M of signature (—1,1,1,1). J
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General Relativity Postulates and Definitions

Physical Interpretations

Principle of covariance: physical laws are intrinsic properties of the
manifold (M, g), i.e., independent of coordinates on M. J

Causal character for tangent vectors: | Observers: timelike curves.

@ v is spacelike if g(v,v) >0o0r v=0. @ Free fall: timelike geodesics.
@ v is timelike if g(v,v) < 0. @ Light: null geodesics.
@ visnullif g(v,v) =0 and v #0.
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Postulates and Definitions
Matter Fields

Gravity closely coupled to matter via the Einstein field equations:
_ 1
Ricg —5 Sc,g=T.

Ricg: Ricci curvature associated with g.
Scg: Scalar curvature associated with g.

T: Stress-energy tensor associated with matter field @.

@: satisfies equations according to its physical theory.

No matter field = Einstein-vacuum equations (EVE):

Ricg = 0.
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General Relativity The Einstein-Vacuum Equations

Connection to Differential Equations

Question

How do we interpret the EVE?

Write equations in terms of g and a fixed coordinate system on M:

@ 2nd-order quasilinear system of PDE for components of g:

o::Zg (923 pgiv — 05 0v8uc — 0p018ve + 0,0vEap) (1)
Z guveg P g (0a0pgys — 0p0v&as) + Folg, 0g).
ocB»v»

Q. What is the character of (1)? (elliptic, parabolic, hyperbolic)

@ Determines what types of problems are reasonable to solve
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(ELEEINEEYIWAN The Einstein-Vacuum Equations

Special Coordinates

Bad news: In general, (1) is none of the above. ]

In special coordinates, (1) becomes hyperbolic.

1
0=—3 0058w + Filg,08).  (2)
o3 Y. Choquet-Bruhat (b. 1923)*
@ Should be solved as an “initial value problem”.

@ (1952, Y. Choquet-Bruhat) Solved Einstein-vacuum *Photo by Renate Schmid for the
equations for short times.

) Oberwolfach Photo Collection

(owpdb.mfo.de).
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(ELEEINEEYIWAN The Einstein-Vacuum Equations

Well-Posedness

Question
Is the initial value problem well-posed ?
Given initial data, can we:

@ Show existence of solution to EVE?

@ Show uniqueness of this solution?

© Show continuous dependence of solution on initial data?

In other words, given the state of the universe at some time, can we:
@ (1) + (2): Predict the future/past?
@ (3): Approximately predict the future/past?
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Solving the Equations

Many difficulties behind solving the EVE:

@ Equations are highly nonlinear.

@ Initial data must first satisfy (elliptic) constraint equations.

Note: Unlike other PDE, we are solving for the spacetime itselfl

@ Usually, solve for functions on fixed background (e.g., RV).

@ Here, we solve for (M, g), i.e., the “universe”.

Example

Initial data: Euclidean space (R3,5)
Solution: Minkowski spacetime (R*,1)
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General Relativity The Einstein-Vacuum Equations

Gravitational Waves

The EVE, in the form (1), are hyperbolic (i.e., “like wave equations”).

@ (Also, linearisation of EVE about Minkowski spacetime yields wave equations.)

Thus, expect wave-like behaviour for spacetimes (radiation, etc.):

@ Early prediction of gravitational waves.

@ Recently observed by LIGO.
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(ELEEINEEYIWAN The Einstein-Vacuum Equations

Cosmological Constant

Can add extra term to Einstein equations
) 1
Ricg —5 Scgg—Ng=T.

@ A € R: cosmological constant.

Taking A # 0 produces solutions with very different properties.
@ A > 0: De Sitter
@ A < 0: Anti-de Sitter (AdS)
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S
Cosmology

Assume spacetime is homogeneous and isotropic:
g = —dt®> + a(t) - dX.

@ Independent of space and direction.

@ Approximates universe at large scales.

Consider Einstein equations, coupled to “dust” matter:

@ Equations becomes ODE in time.

@ Given initial data, solve backwards in time =

Friedmann—Lemaitre—Robertson—Walker (FLRW) spacetime (1920s, 1930s).

After finite time, universe “shrinks to nothing” (i.e., a(t) — 0).

@ Early model of big bang singularity.
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(NN PVl Singular Spacetimes

Schwarzschild Spacetimes

(1916) Schwarzschild spacetimes: spherically
symmetric solution of EVE:

2 om\ !
g=—<1—:n>dt2+<1—;n> dr?

+ r?(d6? + sin?0d@?).

First interpretation: region outside a spherical K. Schwarzschild (1873-1916)"
object with mass m.

. : * Photo fi .wikipedia.org.
@ Observe: equation for g dies at r =2m and r = 0. oto from en.uikipedia-org.  J
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Singular Spacetimes
Global Schwarzschild

Schwarzschild can be interpreted purely as
vacuum spacetime:
@ r =2mis not a real singularity (coordinates fail,
but manifold can be extended through r = 2m).

@ r =0 s a real singularity (scalar curvature dies).
v

Maximal extension looks like figure:

Maximal Schwarzschild spacetime (modulo

@ Two copies of outer region r > 2m.

spherical symmetry).
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Singular Spacetimes
Schwarzschild Black Holes

r = 2m called the event horizon:

@ No observer or light ray entering r < 2m can leave.

@ Any timelike or null geodesic starting in r < 2m
terminates at r = 0 in finite (proper) time.

First models of black holes and singularities.

More general family of vacuum spacetimes:

Maximal Schwarzschild spacetime (modulo

@ (1963) Kerr spacetimes: rotating black holes.

spherical symmetry). y
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Singularity Theorems

Question

Are singularities an artifact of very special spacetimes?

(1965) Penrose singularity theorem:

@ Trapped surfaces + other generic conditions = singularity
@ Trapped surface: all emanating light rays are pulled closer together.

@ Example: Schwarzschild, spheres within r < 2m.

Moreover, singularity formation can be dynamic:

@ (2009) D. Christodoulou: constructed “nice” initial data, from which a trapped
surface eventually forms.
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Major Problems in Mathematical Relativity Formation of Singularities

Cosmic Censorship Conjectures

Question (Open)

What is the nature of general singularities?
How do they form?

(1969, R. Penrose) Conjecture: if a singularity
forms, it should be hidden within a black hole.

Problem (Cosmic Censorship (CC))
@ Weak cosmic censorship (WCC): singularities hidden
within event horizon, hence unseen from outside.

@ Strong cosmic censorship (SCC): general relativity is
deterministic (we can predict the future).
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Major Problems in Mathematical Relativity Formation of Singularities

Cosmic Censorship, Revised

CC encounters some major obstacles:

@ Neither WCC nor SCC implies the other.
@ Both WCC and SCC are false.

Problem

Under reasonable generic conditions (to be determined), ...

In general, these are open problems.

@ The correct mathematical formulation is unclear.
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Sl
Asymptotic States

Question (Open)

Can we describe the long-time dynamics and asymptotics of vacuum
spacetimes, i.e., solutions of EVE?

@ What is “the end state of the universe”?

Problem (Final State Conjecture)

For general initial data that is “asymptotically flat”, the solution
spacetime should asymptotically settle down to:

@ Minkowski spacetime, or

@ One or more Kerr black holes solutions, moving apart from each other.

Very difficult problem = first consider special cases. )
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Major Problems in Mathematical Relativity Global Dynamics

Minkowski Spacetime

First step: global stability of Minkowski spacetime.

@ Study solutions close to Minkowski spacetime.

(1993) D. Christodoulou, S. Klainerman:

@ If initial data is “close to Euclidean space” R, then
the solution of EVE is “close to Minkowski spacetime.”
@ Solution spacetime “decays to Minkowski" at infinity.

@ (Theorem and proof: 526-page book.")

*D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski
Space, Princeton University Press, 1994
*Photo from ETH Zurich www.math.ethz.ch.

T Photo from personal website web.math.princeton.edu.
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Major Problems in Mathematical Relativity Global Dynamics

Black Hole Spacetimes

Problem (Stability of Kerr Spacetimes)

Are Schwarzschild and Kerr spacetimes similarly stable?

This is a major open problem.

@ Significant progress in recent years.

(2016) M. Dafermos, G. Holzegel', I. Rodnianski

@ Stability of Schwarschild spacetime for a linearisation of EVE about Schwarzschild.

@ Linearised solutions decay to (linearised) Kerr spacetime.

f Imperial College London J
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The End

Thank you for your attention!
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