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The Model Equation

I Consider first the Minkowski spacetime R1+3.
I Consider the (scalar) wave equation,

�φ = −∂2
t φ+ ∆φ = ψ, φ, ψ ∈ C∞(R1+3),

with initial data

φ|t=0 = α0 ∈ C∞(R3), ∂tφ|t=0 = α1 ∈ C∞(R3).

I One has an explicit solution for φ – Kirchhoff’s formula –
in terms of ψ, α0, and α1.
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The Model Formula

I Write φ = φ1 + φ2, where
I φ1 satisfies �φ = ψ, with zero initial data.
I φ2 satisfies �φ ≡ 0, with initial data α0, α1.

I Then, we have the representation formula

φ2(t , x) =
1

4πt2

∫
∂B(x ,t)

[α0(y) + (y − x) · ∇α0(y)]dσy

+
1

4πt

∫
∂B(x ,t)

α1(y)dσy ,

φ1(t , x) =
1

4π

∫ t

0

∫
∂B(x ,r)

ψ(y , t − r)

r
dσy dr .

I B(x , r) is the ball in R3 about x of radius r .



Generalized
Representation

Formula

Arick Shao

Preliminaries
Minkowski Spacetime

Geometric Extensions

The Kirchhoff-Sobolev
Parametrix

The Main Result
Reasons to Generalize

A New Derivation

The Main Formula -
Preliminary Version

The Precise
Formulation
The Basic Setting

The Required Quantities

The Main Formula - More
Precise Version

Derivation of the
Main Formula
Overview

Main Steps

Completion of the Proof

Curved Spacetimes

I Main Question: Can we extend this representation to
geometric settings, i.e., to curved spacetimes?

I Curved spacetime: any general (1 + 3)-dimensional
Lorentzian manifold (M, g).

I Equation: Covariant tensorial wave equation,

�gΦ = gαβD2
αβΦ = Ψ,

with appropriate “initial conditions”.
I Goal: representation formula

Φ|p = F (Ψ) + error(Φ) + initial data.

I Some classical applications:
1. (Y. Choquét-Bruhat) Local well-posedness of the

Einstein-vacuum equations.
2. (Chruściel-Shatah) Global existence of the Yang-Mills

equations in curved spacetimes.
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Infinite-Order Formulas

I Infinite-order, or “Hadamard-type”, representation
formulas are more explicit and precise.

I Require infinitely many derivatives of metric g.
I Formula is only local: require geodesic convexity.

I Wave equations in curved spacetimes no longer satisfy
the strong Huygens principle.

I Representation formula at point p depends on entire
causal, rather than null, past (or future) of p.

I These severe restrictions for infinite-order formulas
often make them undesirable for nonlinear PDEs.
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First-Order Formulas

I In contrast, one can also derive first-order, or
“Kirchhoff-Sobolev-type”, representation formulas.

I Again, formula is only local.
I Require only limited number of derivatives of g.
I Formula not explicit – contains recursive error terms:

Φ|p = F (Ψ) + error(Φ) + initial data.

I Representation formula can be supported on only the
null past (or future) of p.

I Require smoothness of null, rather than causal, cone.
I The price to be paid is the recursive error terms.
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A Recent Result

I “Kirchhoff-Sobolev Parametrix” [KSP]
(Klainerman-Rodnianski, 2007): first-order
representation formula on curved spacetimes.

I Valid within null radius of injectivity.
I Supported entirely on past null cone.
I Handles covariant tensorial wave equations, using only

fully covariant (coordinate-independent) techniques.
I Extendible to wave equations on vector bundles.

I Rough statement of KSP:

4π · g(Φ|p, Jp) =

∫
N−(p)

[g(A,Ψ) + Err(A,Φ)] + i.v ..

I A corresponds to r−1 in Minkowski space.
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Applications of KSP

I Applications of this formula:

1. Gauge-invariant proof of global existence of Yang-Mills.
I The classical result (Eardley-Moncrief, 1982) relies on

Cronström gauge.

2. Breakdown criterion for Einstein-vacuum equations
(Klainerman-Rodnianski, 2010).

I Needed pointwise bound for Riemann curvature R of
(M, g), which satisfies tensor wave equation

�gR = R · R.
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Extending KSP

I The main result of this presentation is a generalization
of KSP, which we call [GKSP].

I Q. Why generalize KSP?

1. Want to handle systems of tensor wave equations with
(covariant) first-order terms:

�gΦm +
n∑

c=1

Pm
c · DΦc = Ψm, 1 ≤ m ≤ n.

2. Removal of extraneous assumptions needed in KSP.
3. Explicit formula for initial value terms.
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Handling First-Order Terms

I Analogous breakdown criterion for Einstein-Maxwell
equations (S., 2010)

I Curvature R and electromagnetic tensor F satisfy

�gR ∼= F · D2F + (R + DF )2 + l.o.,

�gDF ∼= F · DR + (R + DF )2 + l.o..

I Right hand side has first-order terms.
I In KSP, these become part of the inhomogeneity Ψ, but

this does not yield the necessary estimates.
I For GKSP, we must treat these terms differently.
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Removing Assumptions

I Assumptions for KSP:

1. Smoothness/regularity of all past null cones in a
neighborhood of the base point p.

2. Local hyperbolicity – spacelike “initial” hypersurface
passed by null cone exactly once.

I Less assumptions for GKSP:

1. Smoothness/regularity of past null cone from p.

I (1) for KSP weakened to only null regularity at p.
I (2) for KSP is not needed at all.
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A Different Proof

I Why can we weaken these assumptions?
I We use a different proof for GKSP.

I Proof of KSP uses an optical function u, whose level
sets form a foliation of null cones.

I Proof of KSP uses distributions: derivatives of δ
composed with u.

I Proof of GKSP remains entirely on the null cone from p.
I Proof of GKSP avoids distribution theory, uses more

rigorous calculus and selective integrations by parts.
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Remaining on the Null Cone

I In both KSP and GKSP, except for Φ, Ψ, and the first
order coefficients P (in GKSP), all other quantities are
defined only on the past null cone from p.

I Both KSP and GKSP supported on the null cone.

I In proving KSP:
I Integration by parts for all derivatives – results in terms

not defined only on null cone.
I These terms disappear due to miraculous cancellations.

I In proving GKSP:
I Integration by parts only for derivatives tangent to null

cone – thus, we never see terms off the null cone.
I The null support property is a natural consequence,

rather than a miracle.



Generalized
Representation

Formula

Arick Shao

Preliminaries
Minkowski Spacetime

Geometric Extensions

The Kirchhoff-Sobolev
Parametrix

The Main Result
Reasons to Generalize

A New Derivation

The Main Formula -
Preliminary Version

The Precise
Formulation
The Basic Setting

The Required Quantities

The Main Formula - More
Precise Version

Derivation of the
Main Formula
Overview

Main Steps

Completion of the Proof

GKSP, Preliminary Version

I GKSP given roughly as follows:

4π ·
n∑

m=1

g(Φm|p, Jm
p )

=

∫
N−(p)

[
n∑

m=1

g(Am,Ψm) + Err(A,Φ,P)

]
+ i.v ..

I Jm
p : tensor field at p.

I Am: satisfies tensorial transport equation (depending on
P and the geometry of N−(p)) along null generators of
N−(p), with initial value determined by Jm

p .
I i.v.: initial value terms – integrals involving A and Φ (and

first derivatives), on “lower boundary” of N−(p).
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Vector Bundle Extensions

I Both KSP and GKSP can be directly generalized to
vector bundles over M, with a bundle metric and a
compatible bundle connection.

I Application: Handling Yang-Mills and
Einstein-Yang-Mills equations.
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Foliation of the Null Cone

I Fix a foliating function f on null cone N−(p):
I f > 0, with f → 0 at p.
I f increasing along past null generators.
I f foliates N−(p) into a family

Sv , 0 < v ≤ δ

of Riemannian submanifolds, each diffeomorphic to S2.
I In particular, Sδ is the lower boundary of N−(p).

I L: (null) tangent vector field to null generators of N−(p).
I L: conjugate null vector field.
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Tensor Fields on N−(p)

I We will deal with the following types of tensorial
quantities on N−(p):

1. Horizontal tensors: everywhere tangent to the spheres
foliating N−(p).

I Corresponding bundle metric and connection given by
those induced on the spheres.

2. Extrinsic tensors: tensors on M, restricted to N−(p).
I Corresponding bundle metric and connection given by g.

3. Mixed tensors: generated by tensor products of
horizontal and extrinsic tensors.

I Bundle metric and connection induced accordingly.
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Horizontal Tensor Fields

I Ricci coefficients: connection coefficients on N−(p)
that describe its geometry.

χ(X ,Y ) = g(DX L,Y ), χ(X ,Y ) = g(DX L,Y ),

ζ(X ) =
1
2

g(DX L, L), η(X ) = g(X ,DLL).

I Modified mass aspect function:

µ = /∇a
ζa −

1
2
χ̂abχ̂

ab
+ |ζ|2 +

1
4

RLLLL −
1
2

RLL.
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Extrinsic Tensor Fields

I Restrictions of g, R, Φ, Ψ, P to N−(p).
I Solutions Am to system of transport equations.

I Am has same rank as Φm.
I f · Am has initial value Jm

p at p, where Jm
p is a tensor at p

of the same rank.
I Am satisfies the following coupled system of transport

equations along the null generators of N−(p):

DLAm = −1
2

(trχ)Am +
1
2

n∑
c=1

Pc
m · Ac.

I Precise indices removed for notational clarity.

I Note that the first-order terms of our wave equation are
handled by altering the Am’s.
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Mixed Tensor Fields

I Horizontal derivatives of extrinsic tensor fields form
mixed tensor fields.

I Example: /∆Am - the “mixed horizontal Laplacian” of Am.

I This formalism justifies integration by parts operations
needed in the proofs of KSP and GKSP.

I The formalism also shows how the derivation of GKSP
can be directly extended to vector bundles.
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GKSP, More Detailed Version

I GKSP can be stated more precisely as

4π ·
n∑

m=1

g(Φm|p, Jm
p )

=
n∑

m=1

∫
N−(p)

g(Am,Ψm)

+

∫
N−(p)

Err(χ, χ, ζ, η, µ,A,Φ,P, g,R)

+

∫
Sδ

Init(χ,A,Φ,P, g).

I For precise (but long) statement, see paper.
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A Simplified Setting

I For convenience, we simplify our setting.
I Assume n = 1, i.e., only one wave equation.
I Assume no first-order terms.

I Our simplified wave equation:

�gΦ = Ψ (the setting of KSP).

I Proof of general case follows from similar ideas.
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Proof Outline

I Begin with the quantity:∫
N−(p;ε)

g(A,Ψ) =

∫
N−(p;ε)

g(A,�gΦ),

where N−(p; ε) is the portion of N−(p) with f > ε.

1. Decompose �g into mixed covariant derivatives.
2. Integrate by parts: move covariant derivatives tangent

to N−(p) from Φ to A.
3. Let ε↘ 0; boundary terms on Sε converge to

4π · g(Φ|p, Jp).



Generalized
Representation

Formula

Arick Shao

Preliminaries
Minkowski Spacetime

Geometric Extensions

The Kirchhoff-Sobolev
Parametrix

The Main Result
Reasons to Generalize

A New Derivation

The Main Formula -
Preliminary Version

The Precise
Formulation
The Basic Setting

The Required Quantities

The Main Formula - More
Precise Version

Derivation of the
Main Formula
Overview

Main Steps

Completion of the Proof

Step 1: Decomposition of �g

I Goal: Express �gΦ, i.e., two covariant spacetime
derivatives of Φ, in terms of mixed covariant derivatives.

�gΦ = /∆Φ− /∇L(DLΦ) + 2η · /∇Φ− 1
2

(trχ) /∇LΦ

− 1
2

(trχ)DLΦ +
1
2

RLL[Φ].

I Mixed covariant derivatives are covariant derivatives on
N−(p), only in directions tangent to N−(p).

I Convenient for integration by parts.
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Step 2: Integrations by Parts

I Next, integrate by parts to move mixed derivatives /∇
and /∇L from Φ to A.

I Derivatives /∇ in spherical directions transfer directly.
I Derivatives /∇L in the tangent null direction yield

“boundary terms” – integrals over top boundary Sε and
bottom boundary Sδ.

I The bottom boundary terms (on Sδ) form the initial
value terms in GKSP.
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The Transport Equation

I After integrations by parts, we have the following
integrals over N−(p; ε):∫

N−(p;ε)
X · Φ,

∫
N−(p;ε)

Y · DLΦ.

I We want to get rid of terms involving DLΦ.

I However, Y is precisely the transport equation for A and
hence vanishes!
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Step 3: The Vertex Limit

I Finally, take the limit ε↘ 0.
I Integrals over N−(p; ε) become integrals over N−(p).

I These are the fundamental solution and error terms.

I Integrals over Sε converge to

4π · g(Φ|p, Jp).

I Φ converges to Φ|p.
I fA converges to Jp.
I Ricci coefficients converge to their Minkowski values.
I Sε “converges to S2”.
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The End

Thank you!
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