A Generalized Representation Formula for Tensor Wave Equations on Curved Spacetimes

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula
Preliminary Version
The Precise
Formulation
Arick Shao

University of Toronto
The Basic Setting
The Required Quantities
The Main Formula - More
Precise Version
Derivation of the
Main Formula
March 8, 2012

Overview
Main Steps
Completion of the Proof

The Model Equation

- Consider first the Minkowski spacetime \mathbb{R}^{1+3}.
- Consider the (scalar) wave equation,

$$
\square \phi=-\partial_{t}^{2} \phi+\Delta \phi=\psi, \quad \phi, \psi \in C^{\infty}\left(\mathbb{R}^{1+3}\right)
$$

with initial data

$$
\left.\phi\right|_{t=0}=\alpha_{0} \in C^{\infty}\left(\mathbb{R}^{3}\right),\left.\quad \partial_{t} \phi\right|_{t=0}=\alpha_{1} \in C^{\infty}\left(\mathbb{R}^{3}\right)
$$

- One has an explicit solution for ϕ - Kirchhoff's formula in terms of ψ, α_{0}, and α_{1}.

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

The Model Formula

- Write $\phi=\phi_{1}+\phi_{2}$, where
- ϕ_{1} satisfies $\square \phi=\psi$, with zero initial data.
- ϕ_{2} satisfies $\square \phi \equiv 0$, with initial data α_{0}, α_{1}.
- Then, we have the representation formula

$$
\begin{aligned}
\phi_{2}(t, x)= & \frac{1}{4 \pi t^{2}} \int_{\partial B(x, t)}\left[\alpha_{0}(y)+(y-x) \cdot \nabla \alpha_{0}(y)\right] d \sigma_{y} \\
& +\frac{1}{4 \pi t} \int_{\partial B(x, t)} \alpha_{1}(y) d \sigma_{y} \\
\phi_{1}(t, x)= & \frac{1}{4 \pi} \int_{0}^{t} \int_{\partial B(x, r)} \frac{\psi(y, t-r)}{r} d \sigma_{y} d r .
\end{aligned}
$$

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

- $B(x, r)$ is the ball in \mathbb{R}^{3} about x of radius r.

Curved Spacetimes

- Main Question: Can we extend this representation to geometric settings, i.e., to curved spacetimes?
- Curved spacetime: any general $(1+3)$-dimensional Lorentzian manifold (M, g).
- Equation: Covariant tensorial wave equation,

$$
\square_{g} \Phi=g^{\alpha \beta} D_{\alpha \beta}^{2} \Phi=\Psi
$$

with appropriate "initial conditions".

- Goal: representation formula

$$
\left.\Phi\right|_{p}=F(\Psi)+\operatorname{error}(\Phi)+\text { initial data } .
$$

- Some classical applications:

1. (Y. Choquét-Bruhat) Local well-posedness of the Einstein-vacuum equations.
2. (Chruściel-Shatah) Global existence of the Yang-Mills equations in curved spacetimes.

Infinite-Order Formulas

- Infinite-order, or "Hadamard-type", representation formulas are more explicit and precise.
- Require infinitely many derivatives of metric g.
- Formula is only local: require geodesic convexity.
- Wave equations in curved spacetimes no longer satisfy the strong Huygens principle.
- Representation formula at point p depends on entire causal, rather than null, past (or future) of p.
- These severe restrictions for infinite-order formulas often make them undesirable for nonlinear PDEs.

First-Order Formulas

- In contrast, one can also derive first-order, or "Kirchhoff-Sobolev-type", representation formulas.
- Again, formula is only local.
- Require only limited number of derivatives of g.
- Formula not explicit - contains recursive error terms:

$$
\left.\Phi\right|_{p}=F(\Psi)+\operatorname{error}(\Phi)+\text { initial data } .
$$

- Representation formula can be supported on only the null past (or future) of p.
- Require smoothness of null, rather than causal, cone.
- The price to be paid is the recursive error terms.

A Recent Result

- "Kirchhoff-Sobolev Parametrix" [KSP] (Klainerman-Rodnianski, 2007): first-order representation formula on curved spacetimes.
- Valid within null radius of injectivity.
- Supported entirely on past null cone.
- Handles covariant tensorial wave equations, using only fully covariant (coordinate-independent) techniques.
- Extendible to wave equations on vector bundles.
- Rough statement of KSP:

$$
4 \pi \cdot g\left(\left.\Phi\right|_{p}, J_{p}\right)=\int_{\mathcal{N}^{-}(p)}[g(A, \Psi)+\operatorname{Err}(A, \Phi)]+i . v . .
$$

- A corresponds to r^{-1} in Minkowski space.

Applications of KSP

- Applications of this formula:

1. Gauge-invariant proof of global existence of Yang-Mills.

- The classical result (Eardley-Moncrief, 1982) relies on Cronström gauge.

2. Breakdown criterion for Einstein-vacuum equations (Klainerman-Rodnianski, 2010).

- Needed pointwise bound for Riemann curvature R of (M, g), which satisfies tensor wave equation

$$
\square_{g} R=R \cdot R
$$

Preliminaries
Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

Extending KSP

- The main result of this presentation is a generalization of KSP, which we call [GKSP].
- Q. Why generalize KSP?

1. Want to handle systems of tensor wave equations with (covariant) first-order terms:

$$
\square_{g} \Phi_{\mathbf{m}}+\sum_{\mathbf{c}=\mathbf{1}}^{\mathbf{n}} P_{\mathbf{m}}{ }^{\mathbf{c}} \cdot D \Phi_{\mathrm{c}}=\Psi_{\mathrm{m}}, \quad 1 \leq \mathbf{m} \leq \mathbf{n} .
$$

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantilies
The Main Formula - More Precise Version

Derivation of the
Main Formula
2. Removal of extraneous assumptions needed in KSP.
3. Explicit formula for initial value terms.

Overview
Main Steps
Completion of the Proof

Handling First-Order Terms

- Analogous breakdown criterion for Einstein-Maxwell equations (S., 2010)
- Curvature R and electromagnetic tensor F satisfy

$$
\begin{array}{r}
\square_{g} R \cong F \cdot D^{2} F+(R+D F)^{2}+\text { I.o. } \\
\square_{g} D F \cong F \cdot D R+(R+D F)^{2}+\text { I.o.. }
\end{array}
$$

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula-
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quanitites
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proot

Removing Assumptions

- Assumptions for KSP:

1. Smoothness/regularity of all past null cones in a neighborhood of the base point p.
2. Local hyperbolicity - spacelike "initial" hypersurface passed by null cone exactly once.

- Less assumptions for GKSP:

1. Smoothness/regularity of past null cone from p.

Preliminaries
Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

A Different Proof

- Why can we weaken these assumptions?
- We use a different proof for GKSP.
- Proof of KSP uses an optical function u, whose level sets form a foliation of null cones.
- Proof of KSP uses distributions: derivatives of δ composed with u.
- Proof of GKSP remains entirely on the null cone from p.
- Proof of GKSP avoids distribution theory, uses more rigorous calculus and selective integrations by parts.

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhotf-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Seting
The Required Quanities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

Remaining on the Null Cone

- In both KSP and GKSP, except for Φ, Ψ, and the first order coefficients P (in GKSP), all other quantities are defined only on the past null cone from p.
- Both KSP and GKSP supported on the null cone.
- In proving KSP:
- Integration by parts for all derivatives - results in terms not defined only on null cone.
- These terms disappear due to miraculous cancellations.
- In proving GKSP:
- Integration by parts only for derivatives tangent to null cone - thus, we never see terms off the null cone.
- The null support property is a natural consequence, rather than a miracle.

Preliminaries
Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

GKSP, Preliminary Version

- GKSP given roughly as follows:

$$
\begin{aligned}
4 \pi \cdot & \sum_{\mathbf{m}=1}^{\mathbf{n}} g\left(\left.\Phi_{\mathbf{m}}\right|_{p}, J_{p}^{\mathbf{m}}\right) \\
& =\int_{\mathcal{N}^{-}(p)}\left[\sum_{\mathbf{m}=1}^{\mathbf{n}} g\left(A^{\mathbf{m}}, \Psi_{\mathbf{m}}\right)+\operatorname{Err}(A, \Phi, P)\right]+i . v . .
\end{aligned}
$$

- $\mathrm{J}_{p}^{\mathrm{m}}$: tensor field at p.
- A^{m} : satisfies tensorial transport equation (depending on P and the geometry of $\left.\mathcal{N}^{-}(p)\right)$ along null generators of $\mathcal{N}^{-}(p)$, with initial value determined by J_{p}^{m}.
- i.v.: initial value terms - integrals involving A and Φ (and first derivatives), on "lower boundary" of $\mathcal{N}^{-}(p)$.

Preliminaries
Minkowski Spaceime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

Vector Bundle Extensions

- Both KSP and GKSP can be directly generalized to vector bundles over M, with a bundle metric and a compatible bundle connection.
- Application: Handling Yang-Mills and Einstein-Yang-Mills equations.

Preliminaries
Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantilies
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

Foliation of the Null Cone

- Fix a foliating function f on null cone $\mathcal{N}^{-}(p)$:
- $f>0$, with $f \rightarrow 0$ at p.
- f increasing along past null generators.
- f foliates $\mathcal{N}^{-}(p)$ into a family

$$
\mathcal{S}_{v}, \quad 0<v \leq \delta
$$

of Riemannian submanifolds, each diffeomorphic to \mathbb{S}^{2}.

- In particular, \mathcal{S}_{δ} is the lower boundary of $\mathcal{N}^{-}(p)$.
- L: (null) tangent vector field to null generators of $\mathcal{N}^{-}(p)$.
- L: conjugate null vector field.

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proot

Tensor Fields on $\mathcal{N}^{-}(p)$

- We will deal with the following types of tensorial quantities on $\mathcal{N}^{-}(p)$:

1. Horizontal tensors: everywhere tangent to the spheres foliating $\mathcal{N}^{-}(p)$.

- Corresponding bundle metric and connection given by those induced on the spheres.

2. Extrinsic tensors: tensors on M, restricted to $\mathcal{N}^{-}(p)$.

- Corresponding bundle metric and connection given by g.

Preliminaries
Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

Derivation of the

- Bundle metric and connection induced accordingly.

Horizontal Tensor Fields

- Ricci coefficients: connection coefficients on $\mathcal{N}^{-}(p)$ that describe its geometry.

$$
\begin{aligned}
\chi(X, Y) & =g\left(\bar{D}_{X} L, Y\right), & \underline{\chi}(X, Y) & =g\left(\bar{D}_{X} \underline{L}, Y\right), \\
\zeta(X) & =\frac{1}{2} g\left(\bar{D}_{X} L, \underline{L}\right), & \underline{\eta}(X) & =g\left(X, \bar{D}_{L} \underline{L}\right) .
\end{aligned}
$$

- Modified mass aspect function:

$$
\mu=\nabla^{a} \zeta_{a}-\frac{1}{2} \hat{\chi}^{a b} \hat{\chi}_{a b}+|\zeta|^{2}+\frac{1}{4} R_{\underline{L L} \underline{L}}-\frac{1}{2} R_{\underline{L}} .
$$

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

Extrinsic Tensor Fields

- Restrictions of g, R, Φ, Ψ, P to $\mathcal{N}^{-}(p)$.
- Solutions A^{m} to system of transport equations.
- A^{m} has same rank as Φ_{m}.
- $f \cdot A^{m}$ has initial value J_{p}^{m} at p, where J_{p}^{m} is a tensor at p of the same rank.
- A^{m} satisfies the following coupled system of transport equations along the null generators of $\mathcal{N}^{-}(p)$:

$$
\bar{D}_{L} A^{m}=-\frac{1}{2}(\operatorname{tr} \chi) A^{m}+\frac{1}{2} \sum_{\mathrm{c}=1}^{\mathrm{n}} P_{\mathrm{c}}^{\mathrm{m}} \cdot A^{\mathrm{c}} .
$$

- Precise indices removed for notational clarity.

Preliminaries
Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula-
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

- Note that the first-order terms of our wave equation are handled by altering the A^{m} 's.

Mixed Tensor Fields

- Horizontal derivatives of extrinsic tensor fields form mixed tensor fields.
- Example: $\bar{\triangle} A^{\mathrm{m}}$ - the "mixed horizontal Laplacian" of A^{m}.
- This formalism justifies integration by parts operations needed in the proofs of KSP and GKSP.
- The formalism also shows how the derivation of GKSP can be directly extended to vector bundles.

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula-
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

GKSP, More Detailed Version

- GKSP can be stated more precisely as

$$
\begin{array}{rl}
4 \pi \cdot \sum_{\mathbf{m}=1}^{\mathbf{n}} & g\left(\left.\Phi_{\mathbf{m}}\right|_{p}, J_{p}^{\mathbf{m}}\right) \\
= & \sum_{\mathbf{m}=1}^{\mathbf{n}} \int_{\mathcal{N}^{-}(p)} g\left(A^{\mathbf{m}}, \Psi_{\mathbf{m}}\right) \\
& +\int_{\mathcal{N}^{-}(p)} \operatorname{Err}(\chi, \underline{\chi}, \zeta, \underline{\eta}, \mu, A, \Phi, P, g, R) \\
& +\int_{\mathcal{S}_{\delta}} \operatorname{Init}(\underline{\chi}, A, \Phi, P, g) .
\end{array}
$$

Preliminaries

Minkowski Spacetime
Geometric Extensions
The Kirchhoff-Sobolev
Parametrix
The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quanities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

- For precise (but long) statement, see paper.

A Simplified Setting

- For convenience, we simplify our setting.
- Assume $\mathbf{n}=1$, i.e., only one wave equation.
- Assume no first-order terms.
- Our simplified wave equation:

$$
\square_{g} \Phi=\Psi \quad \text { (the setting of KSP). }
$$

Preliminaries
Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula.
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantities
The Main Formula - More
Precise Version
Derivation of the

- Proof of general case follows from similar ideas.

Proof Outline

- Begin with the quantity:

$$
\int_{\mathcal{N}-(p ; \epsilon)} g(A, \Psi)=\int_{\mathcal{N}-(p ; \epsilon)} g\left(A, \square_{g} \Phi\right),
$$

where $\mathcal{N}^{-}(p ; \epsilon)$ is the portion of $\mathcal{N}^{-}(p)$ with $f>\epsilon$.

1. Decompose \square_{g} into mixed covariant derivatives.
2. Integrate by parts: move covariant derivatives tangent to $\mathcal{N}^{-}(p)$ from Φ to A.
3. Let $\epsilon \searrow 0$; boundary terms on \mathcal{S}_{ϵ} converge to

$$
4 \pi \cdot g\left(\left.\Phi\right|_{p}, J_{p}\right)
$$

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula-
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quanities
The Main Formula - More Precise Version

Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proof

Step 1: Decomposition of \square_{g}

- Goal: Express $\square_{g} \Phi$, i.e., two covariant spacetime derivatives of Φ, in terms of mixed covariant derivatives.

$$
\begin{aligned}
\square_{g} \Phi= & \bar{\Delta} \Phi \\
& -\bar{\nabla}_{L}\left(\bar{D}_{\underline{L}} \Phi\right)+2 \underline{\eta} \cdot \bar{\nabla} \Phi-\frac{1}{2}(\operatorname{tr} \underline{\chi}) \bar{\nabla}_{L} \Phi \\
& -\frac{1}{2}(\operatorname{tr} \chi) \bar{D}_{\underline{L}} \Phi+\frac{1}{2} R_{L \underline{L}}[\Phi] .
\end{aligned}
$$

- Mixed covariant derivatives are covariant derivatives on $\mathcal{N}^{-}(p)$, only in directions tangent to $\mathcal{N}^{-}(p)$.
- Convenient for integration by parts.

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantilies
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proo

Step 2: Integrations by Parts

- Next, integrate by parts to move mixed derivatives $\bar{\nabla}$ and $\bar{\nabla}_{L}$ from Φ to A.
- Derivatives $\overline{\not \subset}$ in spherical directions transfer directly.
- Derivatives $\bar{\nabla}_{L}$ in the tangent null direction yield "boundary terms" - integrals over top boundary \mathcal{S}_{ϵ} and bottom boundary \mathcal{S}_{δ}.
- The bottom boundary terms (on \mathcal{S}_{δ}) form the initial value terms in GKSP.

Preliminaries
Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Requited Quanities
The Main Formula - More Precise Version

Derivation of the

The Transport Equation

- After integrations by parts, we have the following integrals over $\mathcal{N}^{-}(p ; \epsilon)$:

$$
\int_{\mathcal{N}^{-}(p ; \epsilon)} X \cdot \Phi, \quad \int_{\mathcal{N}^{-}(p ; \epsilon)} Y \cdot \bar{D}_{\underline{L}} \Phi .
$$

- We want to get rid of terms involving $\bar{D}_{\underline{L}} \Phi$.
- However, Y is precisely the transport equation for A and hence vanishes!

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula.
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quanities
The Main Formula - More Precise Version

Derivation of the Main Formula
Overview
Main Steps
Completion of the Proof

Step 3: The Vertex Limit

- Finally, take the limit $\epsilon \searrow 0$.
- Integrals over $\mathcal{N}^{-}(p ; \epsilon)$ become integrals over $\mathcal{N}^{-}(p)$.
- These are the fundamental solution and error terms.
- Integrals over \mathcal{S}_{ϵ} converge to

$$
4 \pi \cdot g\left(\left.\Phi\right|_{p}, J_{p}\right)
$$

- Φ converges to $\left.\Phi\right|_{p}$.

Preliminaries

Minkowski Spacetime
Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result
Reasons to Generalize
A New Derivation
The Main Formula-
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quantilies
The Main Formula - More
Precise Version

- $f A$ converges to J_{p}.
- Ricci coefficients converge to their Minkowski values.
- \mathcal{S}_{ϵ} "converges to \mathbb{S}^{2} ".

Arick Shao

Preliminaries

Minkowski Spacetime
Geometric Extensions
The Kirchhoff-Sobolev
Parametrix
The Main Result
Reasons to Generalize
A New Derivation
Thank you!

The Main Formula -
Preliminary Version
The Precise
Formulation
The Basic Setting
The Required Quanities
The Main Formula - More
Precise Version
Derivation of the
Main Formula
Overview
Main Steps
Completion of the Proos

