A Generalized Representation Formula for Tensor Wave Equations on Curved Spacetimes

Arick Shao

University of Toronto

March 8, 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Generalized Representation Formula

Arick Shao

Preliminaries

Ainkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

The Model Equation

- ► Consider first the Minkowski spacetime ℝ¹⁺³.
- Consider the (scalar) wave equation,

$$\Box \phi = -\partial_t^2 \phi + \Delta \phi = \psi, \qquad \phi, \psi \in \mathcal{C}^{\infty}(\mathbb{R}^{1+3}),$$

with initial data

$$\phi|_{t=0} = \alpha_0 \in \mathcal{C}^{\infty}(\mathbb{R}^3), \qquad \partial_t \phi|_{t=0} = \alpha_1 \in \mathcal{C}^{\infty}(\mathbb{R}^3).$$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ●

One has an explicit solution for φ – Kirchhoff's formula – in terms of ψ, α₀, and α₁.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

The Model Formula

• Write $\phi = \phi_1 + \phi_2$, where

- ϕ_1 satisfies $\Box \phi = \psi$, with zero initial data.
- ϕ_2 satisfies $\Box \phi \equiv 0$, with initial data α_0 , α_1 .
- Then, we have the representation formula

$$\phi_{2}(t,x) = \frac{1}{4\pi t^{2}} \int_{\partial B(x,t)} [\alpha_{0}(y) + (y-x) \cdot \nabla \alpha_{0}(y)] d\sigma_{y}$$
$$+ \frac{1}{4\pi t} \int_{\partial B(x,t)} \alpha_{1}(y) d\sigma_{y},$$
$$\phi_{1}(t,x) = \frac{1}{4\pi} \int_{0}^{t} \int_{\partial B(x,r)} \frac{\psi(y,t-r)}{r} d\sigma_{y} dr.$$

• B(x, r) is the ball in \mathbb{R}^3 about *x* of radius *r*.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Curved Spacetimes

- Main Question: Can we extend this representation to geometric settings, i.e., to curved spacetimes?
 - Curved spacetime: any general (1 + 3)-dimensional Lorentzian manifold (M, g).
 - Equation: Covariant tensorial wave equation,

$$\Box_{g}\Phi = g^{\alpha\beta}D^{2}_{\alpha\beta}\Phi = \Psi,$$

with appropriate "initial conditions".

Goal: representation formula

 $\Phi|_{\rho} = F(\Psi) + \operatorname{error}(\Phi) + \operatorname{initial data}.$

- Some classical applications:
 - 1. (Y. Choquét-Bruhat) Local well-posedness of the Einstein-vacuum equations.
 - 2. (Chruściel-Shatah) Global existence of the Yang-Mills equations in curved spacetimes.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Infinite-Order Formulas

- Infinite-order, or "Hadamard-type", representation formulas are more explicit and precise.
 - Require infinitely many derivatives of metric g.
 - Formula is only local: *require geodesic convexity*.
- Wave equations in curved spacetimes no longer satisfy the strong Huygens principle.
 - Representation formula at point p depends on entire causal, rather than null, past (or future) of p.
- These severe restrictions for infinite-order formulas often make them undesirable for nonlinear PDEs.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

First-Order Formulas

- In contrast, one can also derive first-order, or "Kirchhoff-Sobolev-type", representation formulas.
 - Again, formula is only local.
 - Require only limited number of derivatives of g.
 - Formula not explicit contains recursive error terms:

 $\Phi|_{\rho} = F(\Psi) + \operatorname{error}(\Phi) + \operatorname{initial data}.$

- Representation formula can be supported on only the null past (or future) of p.
 - Require smoothness of null, rather than causal, cone.
 - The price to be paid is the recursive error terms.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

A Recent Result

- "Kirchhoff-Sobolev Parametrix" [KSP] (Klainerman-Rodnianski, 2007): first-order representation formula on curved spacetimes.
 - Valid within null radius of injectivity.
 - Supported entirely on past null cone.
 - Handles covariant tensorial wave equations, using only fully covariant (coordinate-independent) techniques.
 - Extendible to wave equations on vector bundles.
- Rough statement of KSP:

$$4\pi \cdot g(\Phi|_{\rho}, J_{\rho}) = \int_{\mathcal{N}^{-}(\rho)} [g(A, \Psi) + Err(A, \Phi)] + i.v..$$

• A corresponds to r^{-1} in Minkowski space.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Applications of KSP

- Applications of this formula:
 - 1. Gauge-invariant proof of global existence of Yang-Mills.
 - The classical result (Eardley-Moncrief, 1982) relies on Cronström gauge.
 - 2. Breakdown criterion for Einstein-vacuum equations (Klainerman-Rodnianski, 2010).
 - Needed pointwise bound for Riemann curvature R of (M, g), which satisfies tensor wave equation

$$\Box_g R = R \cdot R.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the

Extending KSP

- The main result of this presentation is a generalization of KSP, which we call [GKSP].
- Q. Why generalize KSP?
 - 1. Want to handle *systems* of tensor wave equations with (covariant) *first-order terms*:

$$\Box_g \Phi_{\mathbf{m}} + \sum_{\mathbf{c}=1}^{\mathbf{n}} P_{\mathbf{m}}{}^{\mathbf{c}} \cdot D \Phi_{\mathbf{c}} = \Psi_{\mathbf{m}}, \qquad 1 \leq \mathbf{m} \leq \mathbf{n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. Removal of extraneous assumptions needed in KSP.
- 3. Explicit formula for initial value terms.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions Fhe Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Handling First-Order Terms

- Analogous breakdown criterion for Einstein-Maxwell equations (S., 2010)
 - Curvature R and electromagnetic tensor F satisfy

$$\Box_g R \cong F \cdot D^2 F + (R + DF)^2 + I.o.,$$
$$\Box_g DF \cong F \cdot DR + (R + DF)^2 + I.o..$$

- Right hand side has first-order terms.
 - In KSP, these become part of the inhomogeneity Ψ, but this does not yield the necessary estimates.
 - For GKSP, we must treat these terms differently.

Generalized Representation Formula

Arick Shao

Preliminaries

Ainkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Removing Assumptions

Assumptions for KSP:

- 1. Smoothness/regularity of all past null cones in a neighborhood of the base point *p*.
- Local hyperbolicity spacelike "initial" hypersurface passed by null cone exactly once.
- Less assumptions for GKSP:
 - 1. Smoothness/regularity of past null cone from *p*.
 - (1) for KSP weakened to only null regularity at p.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(2) for KSP is not needed at all.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

A Different Proof

- Why can we weaken these assumptions?
- We use a different proof for GKSP.
 - Proof of KSP uses an optical function u, whose level sets form a foliation of null cones.
 - Proof of KSP uses distributions: derivatives of δ composed with u.
 - Proof of GKSP remains entirely on the null cone from p.
 - Proof of GKSP avoids distribution theory, uses more rigorous calculus and selective integrations by parts.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize

A New Derivation

The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Remaining on the Null Cone

- In both KSP and GKSP, except for Φ, Ψ, and the first order coefficients P (in GKSP), all other quantities are defined only on the past null cone from p.
 - Both KSP and GKSP supported on the null cone.
- In proving KSP:
 - Integration by parts for all derivatives results in terms not defined only on null cone.
 - These terms disappear due to miraculous cancellations.
- In proving GKSP:
 - Integration by parts only for derivatives tangent to null cone – thus, we never see terms off the null cone.
 - The null support property is a natural consequence, rather than a miracle.

Generalized Representation Formula Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions Fhe Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize

A New Derivation

The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

GKSP, Preliminary Version

GKSP given roughly as follows:

$$4\pi \cdot \sum_{\mathbf{m}=1}^{\mathbf{n}} g(\Phi_{\mathbf{m}}|_{\rho}, J_{\rho}^{\mathbf{m}})$$

= $\int_{\mathcal{N}^{-}(\rho)} \left[\sum_{\mathbf{m}=1}^{\mathbf{n}} g(A^{\mathbf{m}}, \Psi_{\mathbf{m}}) + Err(A, \Phi, P) \right] + i.v..$

- $J_p^{\mathbf{m}}$: tensor field at *p*.
- A^m: satisfies tensorial transport equation (depending on P and the geometry of N[−](p)) along null generators of N[−](p), with initial value determined by Jⁿ_p.
- i.v.: initial value terms integrals involving A and Φ (and first derivatives), on "lower boundary" of N⁻(p).

Generalized Representation Formula Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions Fhe Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Vector Bundle Extensions

- Both KSP and GKSP can be directly generalized to vector bundles over *M*, with a bundle metric and a compatible bundle connection.
 - Application: Handling Yang-Mills and Einstein-Yang-Mills equations.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Overview Main Steps Completion of the Proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Foliation of the Null Cone

Fix a foliating function f on null cone $\mathcal{N}^{-}(p)$:

- f > 0, with $f \rightarrow 0$ at p.
- f increasing along past null generators.
- f foliates $\mathcal{N}^{-}(p)$ into a family

 S_{v} , $0 < v \leq \delta$

of Riemannian submanifolds, each diffeomorphic to \mathbb{S}^2 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- In particular, S_{δ} is the lower boundary of $\mathcal{N}^{-}(p)$.
- L: (null) tangent vector field to null generators of $\mathcal{N}^{-}(p)$.
- <u>L</u>: conjugate null vector field.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions Fhe Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting

The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Tensor Fields on $\mathcal{N}^{-}(p)$

- We will deal with the following types of tensorial quantities on N⁻(p):
 - 1. *Horizontal tensors*: everywhere tangent to the spheres foliating $\mathcal{N}^{-}(p)$.
 - Corresponding bundle metric and connection given by those induced on the spheres.
 - 2. *Extrinsic tensors*: tensors on *M*, restricted to $\mathcal{N}^{-}(p)$.
 - Corresponding bundle metric and connection given by *g*.
 - 3. *Mixed tensors*: generated by tensor products of horizontal and extrinsic tensors.
 - Bundle metric and connection induced accordingly.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantitie

The Main Formula - More Precise Version

Derivation of the Main Formula

Horizontal Tensor Fields

 Ricci coefficients: connection coefficients on N⁻(p) that describe its geometry.

$$\chi(X, Y) = g(\overline{D}_X L, Y), \qquad \underline{\chi}(X, Y) = g(\overline{D}_X \underline{L}, Y),$$

 $\zeta(X) = \frac{1}{2}g(\overline{D}_X L, \underline{L}), \qquad \underline{\eta}(X) = g(X, \overline{D}_L \underline{L}).$

Modified mass aspect function:

$$\mu = \nabla^a \zeta_a - \frac{1}{2} \hat{\chi}^{ab} \underline{\hat{\chi}}_{ab} + |\zeta|^2 + \frac{1}{4} R_{L\underline{L}L\underline{L}} - \frac{1}{2} R_{L\underline{L}}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Generalized Representation Formula

Arick Shao

Preliminaries

Ainkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Procise Version

Derivation of the Main Formula

Extrinsic Tensor Fields

- Restrictions of g, R, Φ , Ψ , P to $\mathcal{N}^{-}(p)$.
- Solutions A^m to system of transport equations.
 - A^m has same rank as Φ_m.
 - $f \cdot A^{\mathsf{m}}$ has initial value J_{ρ}^{m} at p, where J_{ρ}^{m} is a tensor at p of the same rank.
 - ► A^m satisfies the following coupled system of transport equations along the null generators of N⁻(p):

$$\overline{D}_{L}A^{\mathbf{m}} = -\frac{1}{2}(\operatorname{tr} \chi)A^{\mathbf{m}} + \frac{1}{2}\sum_{\mathbf{c}=1}^{\mathbf{n}}P_{\mathbf{c}}^{\mathbf{m}} \cdot A^{\mathbf{c}}.$$

- Precise indices removed for notational clarity.
- Note that the first-order terms of our wave equation are handled by altering the A^m's.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More

Derivation of the Main Formula

Mixed Tensor Fields

- Horizontal derivatives of extrinsic tensor fields form mixed tensor fields.
 - Example: ΔA^{m} the "mixed horizontal Laplacian" of A^{m} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- This formalism justifies integration by parts operations needed in the proofs of KSP and GKSP.
- The formalism also shows how the derivation of GKSP can be directly extended to vector bundles.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Decision

Derivation of the Main Formula

GKSP, More Detailed Version

GKSP can be stated more precisely as

$$\begin{aligned} 4\pi \cdot \sum_{\mathbf{m}=1}^{\mathbf{n}} g(\Phi_{\mathbf{m}}|_{\rho}, J_{\rho}^{\mathbf{m}}) \\ &= \sum_{\mathbf{m}=1}^{\mathbf{n}} \int_{\mathcal{N}^{-}(\rho)} g(\mathcal{A}^{\mathbf{m}}, \Psi_{\mathbf{m}}) \\ &+ \int_{\mathcal{N}^{-}(\rho)} \textit{Err}(\chi, \underline{\chi}, \zeta, \underline{\eta}, \mu, \mathcal{A}, \Phi, \mathcal{P}, g, \mathcal{R}) \\ &+ \int_{\mathcal{S}_{\delta}} \textit{Init}(\underline{\chi}, \mathcal{A}, \Phi, \mathcal{P}, g). \end{aligned}$$

For precise (but long) statement, see paper.

Generalized Representation Formula Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions Fhe Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

A Simplified Setting

► For convenience, we simplify our setting.

- Assume n = 1, i.e., only one wave equation.
- Assume no first-order terms.
- Our simplified wave equation:

$$\Box_g \Phi = \Psi$$
 (the setting of KSP).

Proof of general case follows from similar ideas.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Overview

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Main Steps Completion of the Proof

Proof Outline

Begin with the quantity:

$$\int_{\mathcal{N}^-(p;\epsilon)} g(A,\Psi) = \int_{\mathcal{N}^-(p;\epsilon)} g(A,\Box_g \Phi),$$

where $\mathcal{N}^{-}(p; \epsilon)$ is the portion of $\mathcal{N}^{-}(p)$ with $f > \epsilon$.

- 1. Decompose \Box_g into mixed covariant derivatives.
- Integrate by parts: move covariant derivatives tangent to N⁻(p) from Φ to A.
- 3. Let $\epsilon \searrow 0$; boundary terms on S_{ϵ} converge to

 $4\pi \cdot g(\Phi|_{\rho}, J_{\rho}).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Overview

Main Steps Completion of the Proof

Step 1: Decomposition of \Box_g

 Goal: Express □_gΦ, i.e., two covariant spacetime derivatives of Φ, in terms of mixed covariant derivatives.

$$\Box_{g} \Phi = \overline{\Delta} \Phi - \overline{\nabla}_{L} (\overline{D}_{\underline{L}} \Phi) + 2\underline{\eta} \cdot \overline{\nabla} \Phi - \frac{1}{2} (\operatorname{tr} \underline{\chi}) \overline{\nabla}_{L} \Phi - \frac{1}{2} (\operatorname{tr} \chi) \overline{D}_{\underline{L}} \Phi + \frac{1}{2} R_{L\underline{L}} [\Phi].$$

- Mixed covariant derivatives are covariant derivatives on N⁻(p), only in directions tangent to N⁻(p).
 - Convenient for integration by parts.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Overview Main Steps

Step 2: Integrations by Parts

- Next, integrate by parts to move mixed derivatives and [→]∇_L from Φ to A.
 - Derivatives $\overline{\nabla}$ in spherical directions transfer directly.
 - Derivatives ∀_L in the tangent null direction yield "boundary terms" – integrals over top boundary S_ε and bottom boundary S_δ.
- The bottom boundary terms (on S_δ) form the initial value terms in GKSP.

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Overview Main Steps

Completion of the Proof

The Transport Equation

► After integrations by parts, we have the following integrals over N⁻(p; ε):

$$\int_{\mathcal{N}^{-}(\boldsymbol{p};\epsilon)} \boldsymbol{X} \cdot \boldsymbol{\Phi}, \qquad \int_{\mathcal{N}^{-}(\boldsymbol{p};\epsilon)} \boldsymbol{Y} \cdot \overline{\boldsymbol{D}}_{\underline{\boldsymbol{L}}} \boldsymbol{\Phi}$$

- We want to get rid of terms involving $\overline{D}_{\underline{L}}\Phi$.
- However, Y is precisely the transport equation for A and hence vanishes!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions Fhe Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Step 3: The Vertex Limit

- Finally, take the limit $\epsilon \searrow 0$.
- Integrals over $\mathcal{N}^{-}(\rho; \epsilon)$ become integrals over $\mathcal{N}^{-}(\rho)$.
 - These are the fundamental solution and error terms.
- Integrals over S_{ϵ} converge to

$$4\pi \cdot g(\Phi|_{\rho}, J_{\rho})$$

- Φ converges to Φ|_ρ.
- fA converges to J_p.
- Ricci coefficients converge to their Minkowski values.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• S_{ϵ} "converges to \mathbb{S}^2 ".

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

The End

Thank you!

Generalized Representation Formula

Arick Shao

Preliminaries

Minkowski Spacetime Geometric Extensions The Kirchhoff-Sobolev Parametrix

The Main Result

Reasons to Generalize A New Derivation The Main Formula -Preliminary Version

The Precise Formulation

The Basic Setting The Required Quantities The Main Formula - More Precise Version

Derivation of the Main Formula

Overview Main Steps Completion of the Proof