Unique Continuation from Infinity for Linear Waves

Arick Shao

(joint work with Spyros Alexakis and Volker Schlue)

Imperial College London

Arick Shao (Imperial College London)

(B)

Section 1

Introduction

Arick Shao (Imperial College London)

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Problem Statement

Problem

• Consider a linear wave, i.e., solution of

$$L_g \varphi := \Box_g \varphi + a^{\alpha} D_{\alpha} \varphi + V \varphi = 0.$$

- To what extent does "data" for φ at infinity (i.e., radiation field) determine φ near infinity?
 - Does "vanishing at infinity" imply vanishing near infinity?
- How does the geometry of the spacetime impact the answer?
 - Waves on various asymptotically flat spacetimes.

< 3 > < 3 >

Minkowski Infinity

What exactly do we mean by "infinity"?

 \mathbb{R}^{1+n} : infinity explicitly constructed via *Penrose compactification*.

• Compress "distances" via conformal transformation:

$$\tilde{g}_M = \Omega^2 g_M, \qquad \Omega = (1 + |t - r|^2)^{-\frac{1}{2}} (1 + |t + r|^2)^{-\frac{1}{2}}.$$

- $(\mathbb{R}^{1+n}, \tilde{g}_M)$ imbeds into the *Einstein cylinder*, $\mathbb{R} \times \mathbb{S}^n$.
- Boundary of \mathbb{R}^{1+n} interpreted as infinity.

This model is useful for capturing wave propagation.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Asymptotic Flatness

Compactified Minkowski spacetime,

modulo spherical symmetry.

Minkowski infinity partitioned into timelike (ι^{\pm}) , spacelike (ι^{0}) , and null (\mathfrak{I}^{\pm}) infinities.

• Describes where geodesics terminate.

More generally, we consider "asymptotically flat" spacetimes, in which one "has a qualitatively analogous model of infinity."

A D A D A D A

(Rough) Theorem Statement

Theorem

- Assume $L_g \varphi := \Box_g \varphi + a^{\alpha} D_{\alpha} \varphi + V \varphi = 0.$
 - a^{α} , V satisfies asymptotic bounds.
- Assume (M, g) is:
 - Perturbation of Minkowski spacetime.
 - "Positive-mass spacetime" (including Schwarzschild and Kerr families).
- Assume φ vanishes at least to infinite order on part of null infinity (J[±]).

(日) (周) (三) (三)

Then, ϕ vanishes in the interior near \mathbb{J}^{\pm} .

Some Remarks

• Linear wave equation can be replaced by an *inequality*:

 $|\Box_g \varphi| \le |a||D\varphi| + |V||\varphi|.$

- Important feature: applicable to nonlinear wave equations.
 - Previous example: general relativity and black hole uniqueness (Alexakis-Ionescu-Klainerman).
- Hyperbolic analogue of "unique continuation from infinity" problem for time-independent Schrödinger operators $-\Delta V$ (Meshkov, etc.).

・ロト ・聞ト ・ヨト ・ヨト

Problems in Relativity

- Must time-periodic solutions of Einstein's equations be stationary?
 - Can be related to unique continuation for waves at infinity.
 - Past results (Papapetrou, Bičák-Scholtz-Tod) required analyticity.
- *Inheritance of symmetry*: must matter fields coupled to Einstein equations inherit the symmetries of the spacetime?
 - Stationary spacetimes, various matter models (Bičák-Scholtz-Tod)
 - Counterexamples: Klein-Gordon (Bizoń-Wasserman)
- Goal: Eliminate analyticity assumption.

- 4 週 ト - 4 三 ト - 4 三 ト

Section 2

Background

Arick Shao (Imperial College London)

2

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Unique Continuation

When we do not have existence of solutions, can we still attain uniqueness?

Problem (Unique continuation (UC))

Assume the following:

- p(x, D)—linear second-order differential operator on domain $\mathcal{D} \subseteq \mathbb{R}^m$.
- ϕ —solution on \mathcal{D} of $p(x, D)\phi \equiv 0$.
- Σ —hypersurface in D.

If ϕ and $d\phi$ vanish on Σ , then must ϕ necessarily vanish (locally) on one side of Σ ?

- 4 同 6 4 日 6 4 日 6

Elliptic Equations

UC across Σ always holds (Calderón, etc.).

Problem (Strong unique continuation (SUC))

Replace Σ by a point P:

- If ϕ , $d\phi$ vanish at P, then does ϕ also vanish near P?
- (Carleman, Aronszajn, Cordes) One now requires *infinite-order* vanishing of φ at P, i.e.,

$$\int_{B(P,\delta)} |\phi|^2 r^{-N} < \infty, \qquad r(x) = |x - P|.$$

- 4 目 ト - 4 日 ト - 4 日 ト

Hyperbolic Equations

In this case, UC no longer always holds.

(Hörmander) Main criterion for UC for $L_g = \Box_g + a^{\alpha}D_{\alpha} + V$ is *pseudoconvexity* of Σ .

- If $\Sigma := \{f = 0\}$ is pseudoconvex (w.r.t. \Box_g and direction of increasing f), then UC for L_g holds from Σ to $\{f > 0\}$.
- (Alinhac) If Σ is not pseudoconvex, then there is an L_g for which UC does not hold across Σ .

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Pseudoconvexity

For wave equations, pseudoconvexity can be defined geometrically:

Definition

 $\Sigma := \{f = 0\}$ is *pseudoconvex* (w.r.t. \Box_g and increasing f) iff on Σ ,

$$D^2 f(X, X) < 0$$
, if $g(X, X) = Xf = 0$.

- -f is convex with respect to tangent null directions.
- Any null geodesic that hits Σ tangentially will lie in $\{f < 0\}$ nearby.

イロト イポト イヨト イヨト

Carleman Estimates

Carleman estimates: main tool in proving UC.

• For wave equations, roughly of the form

$$\|e^{-\lambda F(f)} \cdot \Box_g \varphi\|_{L^2}^2 \gtrsim \lambda \|e^{-\lambda F(f)} \cdot D\varphi\|_{L^2}^2 + \lambda^3 \|e^{-\lambda F(f)} \cdot \varphi\|_{L^2}^2.$$
(1)

- $\lambda \gg 1$ is a constant.
- F(f) is a reparametrization of f (e.g., log f).
- By standard arguments, (1) implies UC for \Box_g .

イロト 不得下 イヨト イヨト

Example: Bifurcate Null Cones

• Consider a *bifurcate null cone* in Minkowski space, e.g.,

 $\Sigma = \mathcal{N}_{r_0} := \{ |t| = |r| - r_0 \} \subseteq \mathbb{R}^{n+1}.$

- (Ionescu-Klainerman): Unique continuation from \mathcal{N}_{r_0} to outer region.
- Applications: black hole uniqueness results (Alexakis-Ionescu-Klainerman).

Question: What happens when $r_0 \searrow 0$.

- 4 週 ト - 4 三 ト - 4 三 ト

Hyperbolic SUC

What is a hyperbolic analogue for SUC?

Elliptic (ℝⁿ): (∞-order) vanishing at r² = 0 ⇒ vanishing on r² ≪ 1.

$$r^{2} = |x|^{2} = (x^{1})^{2} + \dots + (x^{n})^{2}.$$

• Hyperbolic (\mathbb{R}^{1+n}) : replace r^2 by

$$f = (x^1)^2 + \dots + (x^n)^2 - (x^0)^2 = r^2 - t^2$$

Null cone.

イロト 不得下 イヨト イヨト

- Vanishing at $f = 0 \Rightarrow$ vanishing for $0 < f \ll 1$?
- This is UC from null cone to exterior.

The Minkowski Case

Lemma (Ionescu-Klainerman)

Assume:

- ϕ satisfies $\Box \phi + V \phi = 0$.
 - V satisfies certain decay assumptions.
- ϕ vanishes to infinite order on the null cone $\mathcal{N}_0 := \{f = 0\}$.

Then, ϕ vanishes in the region $0 < f \ll 1$.

Remark: No first-order terms allowed in wave equation.

• Because level sets of f have exactly zero pseudoconvexity.

As before, proof is via a Carleman estimate.

- 4 同 6 4 日 6 4 日 6

General Cases

(Alexakis-Schlue-S.) New extensions of previous result:

- Generalizations of vanishing assumptions.
 - If we prescribe *exponential*, and not just ∞ -order, vanishing at \mathcal{N}_0 , then the UC theorem applies to a wider class of V.
 - In general: correspondence between vanishing condition for φ and wave operators □ + V for which theorem holds.
- *Geometric robustness:* extensions to many non-flat metrics.
 - Main idea: refined Carleman estimates, proved using entirely geometric methods (covariant derivatives, integration by parts).

Geometric Robustness

Lemma

Lorentz metric g, given in "almost null coordinates",

 $\bar{u} \approx t - r$, $\bar{v} \approx t + r$.

- Level sets of $f := -\bar{u}\bar{v}$ are pseudoconvex.
- ϕ vanishes at least to ∞ -order at $\mathcal{N}_0 := \{f = 0\}$.
- Some other technical conditions relating g and pseudoconvexity.

Then, ϕ also vanishes on $0 < f \ll 1$.

If pseudoconvexity is positive, then first-order terms allowed in wave equation (i.e. $\Box_g + a^{\alpha}D_{\alpha} + V$).

Section 3

Unique Continuation from Infinity

Arick Shao (Imperial College London)

3

イロン イヨン イヨン イヨン

Minkowski Spacetime

The Conformal Inversion

• Consider first Minkowski spacetime, \mathbb{R}^{1+n} , with

$$g_M = -4dudv + r^2 \mathring{\gamma}.$$

• Recall the conformal inversion,

$$\Psi(\xi) := \frac{c\xi}{g_M(\xi,\xi)}.$$

• Ψ is a conformal isometry:

$$\Psi^*g_M = (uv)^{-2} \cdot g_M = f^{-2}g_M.$$

• Identifies half of ${\mathfrak I}^+\cup{\mathfrak I}^-$ with ${\mathfrak N}_0.$

• • = • • = •

A Preliminary Result

Lemma

Assume:

- ϕ vanishes to infinite/exponential order on half of $\mathfrak{I}^+ \cup \mathfrak{I}^-$.
- ϕ satisfies $\Box \phi + V \phi = 0$, and, near infinity,

$$V \in \mathcal{O}((|u||v|)^{-1-\varepsilon}) \quad / \quad V \in \mathcal{O}(1).$$

Then, ϕ vanishes near infinity.

What about wave equations with first-order terms?

• For this, we must find some pseudoconvexity.

()

Finding Pseudoconvexity

• Consider "a bit more than half of null infinity":

$$\mathfrak{I}_{\varepsilon} := \{ v = \infty, \ u < \varepsilon \} \cup \{ u = -\infty, \ v > -\varepsilon \}.$$

- Consider $f_{\varepsilon} := (-u + \varepsilon)^{-1} (v + \varepsilon)^{-1}$.
- Positive level sets of f_{ε} are hyperboloids.
 - Level sets focus at boundary of ${\mathfrak I}_{\epsilon}.$
 - $\{f_{\varepsilon} = 0\}$ corresponds to $\mathfrak{I}_{\varepsilon}$.
- Level sets $\{f_{\varepsilon} = c\}$ are *pseudoconvex*.
 - Pseudoconvexity degenerates as $c \searrow 0$.

Red lines: level sets of f_{ε} . Black lines: null geodesics.

⁽Figure by V. Schlue.)

A Warped Inversion

While there is no inversion Ψ adapted to f_{ε} , the idea of a conformal factor survives.

• Construct a "warped" conformal inversion.

• Conformal transformation of g_M :

$$\bar{g}_M := f_{\varepsilon}^2 \cdot g_M.$$

2 Change of coordinates:

$$\bar{u} := -(v + \varepsilon)^{-1}$$
, $\bar{v} := (-u + \varepsilon)^{-1}$.

$$\bar{g}_M = -4d\bar{u}d\bar{v} + f_{\varepsilon}^2 r^2 \cdot \mathring{\gamma}, \qquad f_{\varepsilon} = -\bar{u}\bar{v}.$$

(Figure by V. Schlue.)

∃ → (∃ →

Geometric Robustness, Revisited

This once again looks like hyperbolic SUC.

- Pseudoconvexity is conformally invariant.
 - Thus, level sets of f_{ε} also pseudoconvex in \bar{g}_M .
- While \bar{g}_M is not Minkowski, it satisfies our lemma.
- Since level sets of f_{ε} are pseudoconvex, we can also treat wave equations with first-order terms.

What if we perturb the Minkowski metric $(g = g_M + \delta)$?

- If δ (in null coordinates) decays fast enough toward J_ε, then spacetime, after similar inversion, satisfies hyperbolic SUC lemma.
- (These spacetimes have zero mass.)

・ロト ・聞ト ・ヨト ・ヨト

Main Theorem 1.1

Theorem (Alexakis-Schlue-S., 2013)

Decaying potential case. Consider a metric g over \mathbb{R}^{n+1} of the form

$$g = \mu du^{2} - 4K du dv + \nu dv^{2} + \sum_{A,B=1}^{n-1} r^{2} \gamma_{AB} dy^{A} dy^{B} + \sum_{A=1}^{n-1} (c_{Au} dy^{A} du + c_{Av} dy^{A} dv),$$

with the components satisfying

$$\mathcal{K} = 1 + \mathcal{O}_1^{\epsilon}(r^{-2}), \qquad \gamma_{AB} = \mathring{\gamma}_{AB} + \mathcal{O}_1^{\epsilon}(r^{-1}), \qquad c_{Au}, c_{Av} = \mathcal{O}_1^{\epsilon}(r^{-1}), \qquad \mu, \nu = \mathcal{O}_1^{\epsilon}(r^{-3}).$$

(Here, $\mathcal{O}_{\epsilon}^{\epsilon}(W)$ denotes functions in $\mathcal{O}(W)$ up to first derivatives, with constant $\ll \epsilon$.) Consider also a wave operator $L_g := \Box_g + a^{\alpha} D_{\alpha} + V$, where

$$a^{u} \in \mathcal{O}((v+\varepsilon)^{-1}r^{-\frac{1}{2}}), \qquad a^{v} \in \mathcal{O}((-u+\varepsilon)^{-1}r^{-\frac{1}{2}}), \qquad a^{l} \in \mathcal{O}(f_{\varepsilon}^{\frac{1}{2}}r^{-\frac{3}{2}}), \qquad V \in \mathcal{O}(f_{\varepsilon}^{1+\eta}),$$

for some $\eta > 0$. Consider any C^2 -solution φ of $L_g \varphi = 0$, which in addition vanishes at $\mathfrak{I}_{\varepsilon}$ faster than any power of r (in an L^2 -sense). Then, φ also vanishes near $\mathfrak{I}_{\varepsilon}$.

(日) (周) (三) (三)

Main Theorem 1.2

Theorem (Alexakis-Schlue-S., 2013)

Bounded potential case. Consider (\mathbb{R}^{n+1}, g) as before. Consider also any wave operator $L_g := \Box_g + a^{\alpha} D_{\alpha} + V$, where

$$a^{u} \in \mathcal{O}((v+\varepsilon)^{-1}f_{\varepsilon}^{-\frac{1}{3}}r^{-\frac{1}{2}}), \quad a^{v} \in \mathcal{O}((-u+\varepsilon)^{-1}f_{\varepsilon}^{-\frac{1}{3}}r^{-\frac{1}{2}}), \quad a^{\prime} \in \mathcal{O}(f_{\varepsilon}^{\frac{1}{6}}r^{-\frac{3}{2}}), \quad V \in \mathcal{O}(1).$$

Consider any C^2 -solution ϕ of $L_g \phi = 0$, which in addition vanishes at $\mathfrak{I}_{\varepsilon}$ faster than any power of $\exp(r^{4/3})$ (in an L^2 -sense). Then, ϕ also vanishes near $\mathfrak{I}_{\varepsilon}$.

3

소리가 소문가 소문가 소문가 ...

Remarks on Optimality

- The infinite-order vanishing assumptions for ϕ are necessary.
 - $\bullet\,$ At least, when φ is locally defined near infinity.
- For first theorem, there are counterexamples with $V \in \mathcal{O}(f_{\varepsilon}^{1-\eta})$.
- For second theorem, there are counterexamples with $V \in \mathcal{O}(f_{\varepsilon}^{-\eta})$.
- Do not expect unique continuation from less than half of null infinity (due to argument of Alinhac).

Remark: in contrast to many earlier results (Helgason, Sá Barreto, etc.), we work only locally near infinity, both for assumption and conclusion.

イロト 不得 トイヨト イヨト

The Schwarzschild Exterior

• Outer region of Schwarzschild spacetime with mass m > 0:

$$M := \mathbb{R}_t \times (2m, \infty)_r \times \mathbb{S}^2,$$
$$g_S := -\left(1 - \frac{2m}{r}\right) dt^2 + \left(1 - \frac{2m}{r}\right)^{-1} dr^2 + r^2 \mathring{\gamma}.$$

- How does Schwarzschild differ from Minkowski?
 - Minkowski: leading order pseudoconvexity comes from anchor point of the hyperboloids.
 - Schwarzschild: leading order pseudoconvexity from positive mass.
- This leads to stronger UC results than in Minkowski.

- 4 同 6 4 日 6 4 日 6

Null Coordinates

• Tortoise coordinate: fix $r_0 > 2m$, and let

$$r_*(r):=\int_{r_0}^r\left(1-\frac{2m}{s}\right)ds.$$

• Null coordinates then defined by

$$u := \frac{1}{2}(t - r_*), \qquad v := \frac{1}{2}(t + r_*).$$

In null coordinates,

$$g_S = -4\left(1-\frac{2m}{r}\right)dudv + r^2\mathring{\gamma}.$$

(Figure by V. Schlue.)

(B)

Pseudoconvexity in Schwarzschild

- Define $f_{r_0} = -u^{-1}v^{-1}$, whose level sets are hyperboloids which focus at $\{v = \infty, u = 0\}$ and $\{u = -\infty, v = 0\}$.
 - In particular, anchor points depend on choice of r_0 .
- Main observation: level sets of f_{r_0} are pseudoconvex, regardless of choice of r_0 .
 - Thus, by choosing r₀ large enough, we get unique continuation from an arbitrarily small part of null infinity (containing ι⁰).

イロト 不得下 イヨト イヨト 二日

Reduction to Hyperbolic SUC

• We can define an analogous "conformal inversion",

$$\bar{g}_{S} := \left(1 - \frac{2m}{r}\right)^{-1} f_{r_{0}}^{2} \cdot g_{S}, \qquad \bar{u} := -v^{-1}, \quad \bar{v} := -u^{-1}.$$

In the inverted coordinates,

$$ar{g}_{\mathcal{S}} = -4dar{u}dar{v} + \left(1-rac{2m}{r}
ight)^{-1}r^2\cdot\mathring{\gamma}.$$

Again, this satisfies the hyperbolic SUC lemma.

(日) (周) (三) (三)

Perturbations of Schwarzschild

Geometric robustness: process also works for perturbations of g_S .

• Includes the entire Kerr family, after coordinate change.

Theorem (Alexakis-Schlue-S., 2013)

The main theorems for near-Minkowski spacetimes have direct analogues for near-Schwarzschild spacetimes, including all Kerr spactimes. The main difference with the near-Minkowski theorems is the following improvement: (infinite-order) vanishing is required for only an arbitrarily small part of null infinity.

The General Class

Results extend to a general class of dynamical, positive-mass spacetimes.

• Manifold (M,g) given (in almost-null coordinates) by

$$D := (-\infty, 0)_u \times (0, \infty)_v \times \mathbb{S}^{n-1},$$

$$g := \mu du^2 - 4K du dv + \nu dv^2 + \sum_{A,B=1}^{n-1} r^2 \gamma_{AB} dy^A dy^B$$

$$+ \sum_{A=1}^{n-1} (c_{Au} dy^A du + c_{Av} dy^A dv).$$

- Similar to near-Minkowski, but we prescribe positive mass.
- Contains perturbations of Schwarzschild as special case.

소리가 소문가 소문가 소문가 ...

Asymptotic Assumptions

• *Metric decay:* The components of g satisfy:

$$\begin{aligned} \mathcal{K} &= 1 - \frac{2m}{r}, \qquad \gamma_{AB} = \mathring{\gamma}_{AB} + \mathcal{O}_1\left(\frac{1}{v-u}\right), \\ c_{Au}, c_{Av} &= \mathcal{O}_1\left(\frac{1}{v-u}\right), \qquad \mu, \nu = \mathcal{O}_1\left(\frac{1}{(v-u)^3}\right). \end{aligned}$$

- Positive mass: m is a function on m satisfying $m \ge m_{\min} > 0$. Moreover, dm satisfies certain decay estimates.
 - In particular, *m* has limits at null infinity.
- *Radial function: r* is also a (not necessarily spherically symmetric) function satisfying certain asymptotic assumptions.
 - *r* and $r_* := v u$ are related like in Schwarzschild: $r_* r \simeq \log r$.

イロト 不得下 イヨト イヨト 二日

Reduction to Hyperbolic SUC

Though more computationally intense, the idea is same as before.

- Level sets of $f := -u^{-1}v^{-1}$ are pseudoconvex.
- Conformal inversion of metric, $\bar{g} := K^{-1}f^2 \cdot g$.

Then, \bar{g} satisfies the hyperbolic SUC lemma.

• In fact, UC results for perturbations of Minkowski, perturbations of Schwarzschild, and this general class are proved all at once.

ヘロト 人間 とくほ とくほ とう

Main Theorems 2

Theorem (Alexakis-Schlue-S., 2013)

Consider (M,g) as above. Consider also any wave operator $L_g := \Box_g + a^{\alpha} D_{\alpha} + V$, where

$$a^{u} \in \mathcal{O}(v^{-1}r^{-\frac{1}{2}}), \quad a^{v} \in \mathcal{O}((-u)^{-1}r^{-\frac{1}{2}}), \quad a^{l} \in \mathcal{O}(f^{\frac{1}{2}}r^{-\frac{3}{2}}), \quad V \in \mathcal{O}(f^{1+\eta}),$$

for some $\eta > 0$. Consider any C^2 -solution φ of $L_g \varphi = 0$, which vanishes at $\mathbb{I} = \{v = \infty, u < 0\} \cup \{u = -\infty, v > 0\}$ faster than any power of r (in an L^2 -sense). Then, φ also vanishes near \mathbb{I} .

Theorem (Alexakis-Schlue-S., 2013)

Consider (M,g) as above. Consider also any wave operator $L_g:=\Box_g+a^{\alpha}D_{\alpha}+V,$ where

$$a^{u} \in \mathcal{O}(v^{-1}f^{-\frac{1}{3}}r^{-\frac{1}{2}}), \quad a^{v} \in \mathcal{O}((-u)^{-1}f^{-\frac{1}{3}}r^{-\frac{1}{2}}), \quad a^{l} \in \mathcal{O}(f^{\frac{1}{6}}r^{-\frac{3}{2}}), \quad V \in \mathcal{O}(1).$$

Consider any C^2 -solution ϕ of $L_g \phi = 0$, which vanishes at \mathbb{J} faster than any power of $\exp(r^{4/3})$ (in an L^2 -sense). Then, ϕ also vanishes near \mathbb{J} .

Unique Continuation

3

・ロン ・四 と ・ 回 と ・ 日 と

Conclusions

Roughly, if ϕ vanishes to infinite order at a certain part of the null infinity, then ϕ vanishes in a neighborhood in the physical interior.

- Connection between pseudoconvexity (PDE and geometric notion) and positive mass (relativistic notion).
- Connection between unique continuation from infinity and from null cones, via "conformal inversions".
- View of unique continuation from null cones as hyperbolic analogue of strong unique continuation for elliptic equations.

イロト イポト イヨト イヨト

The End

• Thank you for your attention!

Arick Shao (Imperial College London)

2

イロン イヨン イヨン イヨン

Section 5

Appendix

Arick Shao (Imperial College London)

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Statement of the Estimates

Main tool for hyperbolic SUC is Carleman estimate.

• (For our main results, this is the inverted setting.) General form:

$$\|e^{-\lambda F(f)} \Box_{g} \varphi\|_{L^{2}}^{2} \gtrsim \lambda \sum_{\alpha} \|e^{-\lambda F(f)} A^{\alpha} D_{\alpha} \varphi\|_{L^{2}}^{2} + \lambda^{3} \|e^{-\lambda F(f)} B \varphi\|_{L^{2}}^{2}.$$

- $\lambda \ll 1$.
- $F(f_{\varepsilon})$ is a reparametrization of f_{ε} .
- A^α, B are positive weights that blow up or decay at {f = 0}.
 Proof of Carleman estimate is purely geometric.

Main Ideas

Carleman estimate can be thought of as an energy estimate for \Box_g , but:

- We want boundary terms to vanish.
- We want bulk terms to be positive.

Objective (1) achieved by:

- Vanishing assumptions for ϕ at f = 0.
- Cutoff functions for $f = f_0 > 0$.

Objective (2) achieved using a *positive commutator*.

• Consider wave equation not for ϕ , but for $\psi = \mathcal{F}\phi$.

イロト イポト イヨト イヨト 二日

Carleman Estimates

Positive Commutators

To ensure the bulk term is positive:

- $\textbf{0} \quad \text{Bulk terms containing derivative of } \boldsymbol{\varphi} \text{ tangent to level sets of } \mathcal{F}:$
 - $\bullet\,$ These are positive only when level sets of ${\cal F}$ are pseudoconvex.
 - Thus, $\mathcal{F} = f$ is a candidate.
- **2** Bulk terms containing ϕ and derivative normal to level sets of \mathcal{F} :
 - Additional freedom: any reparametrization $F \circ \mathcal{F} = F \circ f$ (where F' > 0) produces same level sets.
 - Find reparametrization F(f) so these bulk terms are positive.
 - Many valid choices of F—as long as F grows fast enough.

Some Features

Weights A^{α} and B depend on pseudoconvexity and on choice of F(f).

- F(f) must grow "at least as fast as log f" (but cannot be log itself).
- (lonescu-Klainerman) Choose $F = \log f + \text{correction}$.
 - Decaying potential case: $|V| \lesssim f^{1+}$, requires ∞ -order vanishing of φ .
- (New) Choose $F = -f^{-2/3}$.
 - Bounded potential case: $|V| \lesssim 1$, requires exponential vanishing of φ .

イロト 不得下 イヨト イヨト 二日

Further Results

Finite-Order Vanishing

Can we somehow do away with the infinite-order vanishing assumption?

- Cannot do so while remaining local near infinity (counterexamples).
- (Alexakis-S.) Yes on Minkowski spacetime, if we have global information for ϕ .

Technical obstruction to finite-order vanishing comes from cutoff function to make boundary terms vanish.

- If we can go from infinity all the way to null cone about origin, then boundary terms vanishing without cutoff function.
- Requires very careful choice of reparametrization of f.

Further Results

Nonlinear Equations

The finite-order vanishing theorems have a new obstruction:

• Linear potential must also be small.

(Alexakis-S.) However, for some nonlinear equations, we can treat nonlinearity directly within Carleman estimates:

- Focusing, subconformal nonlinearity.
- Defocusing, conformal and superconformal nonlinearity.

In these cases, can eliminate smallness assumption.

(Alexakis-S.) These nonlinear Carleman estimates have other applications:

- Final states.
- Formation of singularities.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -