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Introduction The Main Problem

Problem Statement

Problem

Consider a linear wave, i.e., solution of

Lgφ := �gφ+ aαDαφ+ Vφ = 0.

To what extent does “data” for φ at infinity (i.e., radiation field)
determine φ near infinity?

Does “vanishing at infinity” imply vanishing near infinity?

How does the geometry of the spacetime impact the answer?

Waves on various asymptotically flat spacetimes.
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Introduction The Main Problem

Minkowski Infinity

What exactly do we mean by “infinity”?

R1+n: infinity explicitly constructed via Penrose compactification.

Compress “distances” via conformal transformation:

g̃M = Ω2gM , Ω = (1 + |t − r |2)−
1
2 (1 + |t + r |2)−

1
2 .

(R1+n, g̃M) imbeds into the Einstein cylinder, R× Sn.

Boundary of R1+n interpreted as infinity.

This model is useful for capturing wave propagation.
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Introduction The Main Problem

Asymptotic Flatness

R1+nr=0

ι+

ι−

ι0

I+

I−

Compactified Minkowski spacetime,

modulo spherical symmetry.

Minkowski infinity partitioned into timelike (ι±),
spacelike (ι0), and null (I±) infinities.

Describes where geodesics terminate.

More generally, we consider “asymptotically flat”
spacetimes, in which one “has a qualitatively
analogous model of infinity.”
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Introduction The Main Problem

(Rough) Theorem Statement

ι0

I+

I−

φ=0.

φ=0.

φ=0?

Theorem

Assume Lgφ := �gφ+ aαDαφ+ Vφ = 0.

aα, V satisfies asymptotic bounds.

Assume (M, g) is:

Perturbation of Minkowski spacetime.
“Positive-mass spacetime” (including
Schwarzschild and Kerr families).

Assume φ vanishes at least to infinite order on
part of null infinity (I±).

Then, φ vanishes in the interior near I±.
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Introduction Connections and Motivations

Some Remarks

Linear wave equation can be replaced by an inequality:

|�gφ| ≤ |a||Dφ|+ |V ||φ|.

Important feature: applicable to nonlinear wave equations.

Previous example: general relativity and black hole uniqueness
(Alexakis-Ionescu-Klainerman).

Hyperbolic analogue of “unique continuation from infinity” problem
for time-independent Schrödinger operators −∆− V (Meshkov, etc.).

Arick Shao (Imperial College London) Unique Continuation 7 / 46



Introduction Connections and Motivations

Problems in Relativity

Must time-periodic solutions of Einstein’s equations be stationary?

Can be related to unique continuation for waves at infinity.
Past results (Papapetrou, Bičák-Scholtz-Tod) required analyticity.

Inheritance of symmetry: must matter fields coupled to Einstein
equations inherit the symmetries of the spacetime?

Stationary spacetimes, various matter models (Bičák-Scholtz-Tod)
Counterexamples: Klein-Gordon (Bizoń-Wasserman)

Goal: Eliminate analyticity assumption.
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Section 2

Background
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Background Classical Results

Unique Continuation

When we do not have existence of solutions, can we still attain uniqueness?

Problem (Unique continuation (UC))

Assume the following:

p(x ,D)—linear second-order differential operator on domain D ⊆ Rm.

φ—solution on D of p(x ,D)φ ≡ 0.

Σ—hypersurface in D.

If φ and dφ vanish on Σ, then must φ necessarily vanish (locally) on one
side of Σ?
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Background Classical Results

Elliptic Equations

UC across Σ always holds (Calderón, etc.).

Problem (Strong unique continuation (SUC))

Replace Σ by a point P:

If φ, dφ vanish at P, then does φ also vanish near P?

(Carleman, Aronszajn, Cordes) One now requires infinite-order
vanishing of φ at P, i.e.,∫

B(P,δ)
|φ|2r−N <∞, r(x) = |x − P |.
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Background Classical Results

Hyperbolic Equations

In this case, UC no longer always holds.

(Hörmander) Main criterion for UC for Lg = �g + aαDα + V is
pseudoconvexity of Σ.

If Σ := {f = 0} is pseudoconvex (w.r.t. �g and direction of increasing
f ), then UC for Lg holds from Σ to {f > 0}.

(Alinhac) If Σ is not pseudoconvex, then there is an Lg for which UC
does not hold across Σ.
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Background Classical Results

Pseudoconvexity

For wave equations, pseudoconvexity can be defined geometrically:

Definition

Σ := {f = 0} is pseudoconvex (w.r.t. �g and increasing f ) iff on Σ,

D2f (X ,X ) < 0, if g(X ,X ) = Xf = 0.

−f is convex with respect to tangent null directions.

Any null geodesic that hits Σ tangentially will lie in {f < 0} nearby.
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Background Classical Results

Carleman Estimates

Carleman estimates: main tool in proving UC.

For wave equations, roughly of the form

‖e−λF (f ) ·�gφ‖2
L2 & λ‖e−λF (f ) · Dφ‖2

L2 + λ
3‖e−λF (f ) · φ‖2

L2 . (1)

λ� 1 is a constant.
F (f ) is a reparametrization of f (e.g., log f ).

By standard arguments, (1) implies UC for �g .
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Background Classical Results

Example: Bifurcate Null Cones

Consider a bifurcate null cone in
Minkowski space, e.g.,

Σ = Nr0 := {|t | = |r |− r0} ⊆ Rn+1.

(Ionescu-Klainerman): Unique
continuation from Nr0 to outer region.

Applications: black hole uniqueness
results (Alexakis-Ionescu-Klainerman).

Question: What happens when r0 ↘ 0. Bifurcate null cone.
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Background Hyperbolic Strong Unique Continuation

Hyperbolic SUC

What is a hyperbolic analogue for SUC?

Elliptic (Rn): (∞-order) vanishing at r2 = 0 ⇒
vanishing on r2 � 1.

r2 = |x |2 = (x1)2 + · · ·+ (xn)2.

Hyperbolic (R1+n): replace r2 by

f = (x1)2 + · · ·+ (xn)2 − (x0)2 = r2 − t2.

Vanishing at f = 0 ⇒ vanishing for
0 < f � 1?
This is UC from null cone to exterior.

f>0f>0

f=0

f=0

f=0

f=0

Null cone.
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Background Hyperbolic Strong Unique Continuation

The Minkowski Case

Lemma (Ionescu-Klainerman)

Assume:

φ satisfies �φ+ Vφ = 0.

V satisfies certain decay assumptions.

φ vanishes to infinite order on the null cone N0 := {f = 0}.

Then, φ vanishes in the region 0 < f � 1.

Remark: No first-order terms allowed in wave equation.

Because level sets of f have exactly zero pseudoconvexity.

As before, proof is via a Carleman estimate.
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Background Hyperbolic Strong Unique Continuation

General Cases

(Alexakis-Schlue-S.) New extensions of previous result:

1 Generalizations of vanishing assumptions.

If we prescribe exponential, and not just ∞-order, vanishing at N0,
then the UC theorem applies to a wider class of V .
In general: correspondence between vanishing condition for φ and wave
operators �+ V for which theorem holds.

2 Geometric robustness: extensions to many non-flat metrics.

Main idea: refined Carleman estimates, proved using entirely geometric
methods (covariant derivatives, integration by parts).
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Background Hyperbolic Strong Unique Continuation

Geometric Robustness

Lemma

Lorentz metric g, given in “almost null coordinates”,

ū ≈ t − r , v̄ ≈ t + r .

Level sets of f := −ūv̄ are pseudoconvex.

φ vanishes at least to ∞-order at N0 := {f = 0}.

Some other technical conditions relating g and pseudoconvexity.

Then, φ also vanishes on 0 < f � 1.

If pseudoconvexity is positive, then first-order terms allowed in wave
equation (i.e. �g + aαDα + V ).
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Unique Continuation from Infinity

Section 3

Unique Continuation from Infinity
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Unique Continuation from Infinity Minkowski Spacetime

The Conformal Inversion

Consider first Minkowski spacetime, R1+n, with

gM = −4dudv + r2γ̊.

Recall the conformal inversion,

Ψ(ξ) :=
cξ

gM(ξ, ξ)
.

Ψ is a conformal isometry:

Ψ∗gM = (uv)−2 · gM = f −2gM .

Identifies half of I+ ∪ I− with N0.

ι+

ι−

ι0

I+

I−
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Unique Continuation from Infinity Minkowski Spacetime

A Preliminary Result

Lemma

Assume:

φ vanishes to infinite/exponential order on half of I+ ∪ I−.

φ satisfies �φ+ Vφ = 0, and, near infinity,

V ∈ O((|u||v |)−1−ε) / V ∈ O(1).

Then, φ vanishes near infinity.

What about wave equations with first-order terms?

For this, we must find some pseudoconvexity.
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Unique Continuation from Infinity Minkowski Spacetime

Finding Pseudoconvexity

Consider “a bit more than half of null infinity”:

Iε := {v = ∞, u < ε} ∪ {u = −∞, v > −ε}.

Consider fε := (−u + ε)−1(v + ε)−1.

Positive level sets of fε are hyperboloids.

Level sets focus at boundary of Iε.
{fε = 0} corresponds to Iε.

Level sets {fε = c} are pseudoconvex.

Pseudoconvexity degenerates as c ↘ 0.

ι0

ε

I+

I−

Red lines: level sets of fε.
Black lines: null geodesics.

(Figure by V. Schlue.)
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Unique Continuation from Infinity Minkowski Spacetime

A Warped Inversion

While there is no inversion Ψ adapted to fε, the
idea of a conformal factor survives.

Construct a “warped” conformal inversion.

1 Conformal transformation of gM :

ḡM := f 2
ε · gM .

2 Change of coordinates:

ū := −(v + ε)−1, v̄ := (−u + ε)−1.

In “inverted” coordinates,

ḡM = −4dūdv̄ + f 2
ε r

2 · γ̊, fε = −ūv̄ .

ι0

f = c −UV = c

I+

I−

Ī

Warped inversion of Minkowski.

(Figure by V. Schlue.)
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Unique Continuation from Infinity Minkowski Spacetime

Geometric Robustness, Revisited

This once again looks like hyperbolic SUC.

Pseudoconvexity is conformally invariant.

Thus, level sets of fε also pseudoconvex in ḡM .

While ḡM is not Minkowski, it satisfies our lemma.

Since level sets of fε are pseudoconvex, we can also treat wave
equations with first-order terms.

What if we perturb the Minkowski metric (g = gM + δ)?

If δ (in null coordinates) decays fast enough toward Iε, then
spacetime, after similar inversion, satisfies hyperbolic SUC lemma.

(These spacetimes have zero mass.)
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Unique Continuation from Infinity The Main Theorems (Zero Mass)

Main Theorem 1.1

Theorem (Alexakis-Schlue-S., 2013)

Decaying potential case. Consider a metric g over Rn+1 of the form

g = µdu2
− 4Kdudv + νdv2

+

n−1∑
A,B=1

r2
γABdyAdyB +

n−1∑
A=1

(cAudy
Adu + cAv dy

Adv),

with the components satisfying

K = 1 +Oε1 (r−2
), γAB = γ̊AB +Oε1 (r−1

), cAu , cAv = Oε1 (r−1
), µ, ν = Oε1 (r−3

).

(Here, Oε1 (W ) denotes functions in O(W ) up to first derivatives, with constant� ε.) Consider also a wave operator
Lg := �g + aαDα + V , where

au ∈ O((v + ε)
−1r

− 1
2 ), av ∈ O((−u + ε)

−1r
− 1

2 ), aI ∈ O(f
1
2
ε r

− 3
2 ), V ∈ O(f 1+η

ε ),

for some η > 0. Consider any C2-solution φ of Lgφ = 0, which in addition vanishes at Iε faster than any power of r (in an

L2-sense). Then, φ also vanishes near Iε.
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Unique Continuation from Infinity The Main Theorems (Zero Mass)

Main Theorem 1.2

Theorem (Alexakis-Schlue-S., 2013)

Bounded potential case. Consider (Rn+1, g) as before. Consider also any wave operator Lg := �g + aαDα + V , where

au ∈ O((v + ε)
−1f

− 1
3

ε r
− 1

2 ), av ∈ O((−u + ε)
−1f

− 1
3

ε r
− 1

2 ), aI ∈ O(f
1
6
ε r

− 3
2 ), V ∈ O(1).

Consider any C2-solution φ of Lgφ = 0, which in addition vanishes at Iε faster than any power of exp(r4/3) (in an L2-sense).

Then, φ also vanishes near Iε.
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Unique Continuation from Infinity The Main Theorems (Zero Mass)

Remarks on Optimality

The infinite-order vanishing assumptions for φ are necessary.

At least, when φ is locally defined near infinity.

For first theorem, there are counterexamples with V ∈ O(f 1−η
ε ).

For second theorem, there are counterexamples with V ∈ O(f −ηε ).

Do not expect unique continuation from less than half of null infinity
(due to argument of Alinhac).

Remark: in contrast to many earlier results (Helgason, Sá Barreto, etc.),
we work only locally near infinity, both for assumption and conclusion.
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Unique Continuation from Infinity Schwarzschild and Kerr Spacetimes

The Schwarzschild Exterior

Outer region of Schwarzschild spacetime with mass m > 0:

M := Rt × (2m,∞)r × S2,

gS := −

(
1 −

2m

r

)
dt2 +

(
1 −

2m

r

)−1

dr2 + r2γ̊.

How does Schwarzschild differ from Minkowski?

Minkowski: leading order pseudoconvexity comes from anchor point of
the hyperboloids.
Schwarzschild: leading order pseudoconvexity from positive mass.

This leads to stronger UC results than in Minkowski.
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Unique Continuation from Infinity Schwarzschild and Kerr Spacetimes

Null Coordinates

Tortoise coordinate: fix r0 > 2m, and let

r∗(r) :=

∫ r
r0

(
1 −

2m

s

)
ds.

Null coordinates then defined by

u :=
1

2
(t − r∗), v :=

1

2
(t + r∗).

In null coordinates,

gS = −4

(
1 −

2m

r

)
dudv + r2γ̊.

t = 0

u = 0

v = 0

r = r0

ι0

I+
r0

I−
r0

Schwarzschild in null coordinates.

(Figure by V. Schlue.)
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Unique Continuation from Infinity Schwarzschild and Kerr Spacetimes

Pseudoconvexity in Schwarzschild

Define fr0 = −u−1v−1, whose level sets are hyperboloids which focus
at {v = ∞, u = 0} and {u = −∞, v = 0}.

In particular, anchor points depend on choice of r0.

Main observation: level sets of fr0 are pseudoconvex, regardless of
choice of r0.

Thus, by choosing r0 large enough, we get unique continuation from an
arbitrarily small part of null infinity (containing ι0).
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Unique Continuation from Infinity Schwarzschild and Kerr Spacetimes

Reduction to Hyperbolic SUC

We can define an analogous “conformal inversion”,

ḡS :=

(
1 −

2m

r

)−1

f 2
r0
· gS , ū := −v−1, v̄ := −u−1.

In the inverted coordinates,

ḡS = −4dūdv̄ +

(
1 −

2m

r

)−1

r2 · γ̊.

Again, this satisfies the hyperbolic SUC lemma.
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Unique Continuation from Infinity Schwarzschild and Kerr Spacetimes

Perturbations of Schwarzschild

Geometric robustness: process also works for perturbations of gS .

Includes the entire Kerr family, after coordinate change.

Theorem (Alexakis-Schlue-S., 2013)
The main theorems for near-Minkowski spacetimes have direct analogues for near-Schwarzschild spacetimes, including all Kerr

spactimes. The main difference with the near-Minkowski theorems is the following improvement: (infinite-order) vanishing is

required for only an arbitrarily small part of null infinity.
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Unique Continuation from Infinity Dynamical Spacetimes

The General Class

Results extend to a general class of dynamical, positive-mass spacetimes.

Manifold (M, g) given (in almost-null coordinates) by

D := (−∞, 0)u × (0,∞)v × Sn−1,

g := µdu2 − 4Kdudv + νdv2 +

n−1∑
A,B=1

r2γABdy
AdyB

+

n−1∑
A=1

(cAudy
Adu + cAvdy

Adv).

Similar to near-Minkowski, but we prescribe positive mass.
Contains perturbations of Schwarzschild as special case.
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Unique Continuation from Infinity Dynamical Spacetimes

Asymptotic Assumptions

Metric decay: The components of g satisfy:

K = 1 −
2m

r
, γAB = γ̊AB +O1

(
1

v − u

)
,

cAu, cAv = O1

(
1

v − u

)
, µ, ν = O1

(
1

(v − u)3

)
.

Positive mass: m is a function on m satisfying m ≥ mmin > 0.
Moreover, dm satisfies certain decay estimates.

In particular, m has limits at null infinity.

Radial function: r is also a (not necessarily spherically symmetric)
function satisfying certain asymptotic assumptions.

r and r∗ := v − u are related like in Schwarzschild: r∗ − r ' log r .
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Unique Continuation from Infinity Dynamical Spacetimes

Reduction to Hyperbolic SUC

Though more computationally intense, the idea is same as before.

Level sets of f := −u−1v−1 are pseudoconvex.

Conformal inversion of metric, ḡ := K−1f 2 · g .

Then, ḡ satisfies the hyperbolic SUC lemma.

In fact, UC results for perturbations of Minkowski, perturbations of
Schwarzschild, and this general class are proved all at once.
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Unique Continuation from Infinity The Main Theorems (Positive Mass)

Main Theorems 2

Theorem (Alexakis-Schlue-S., 2013)

Consider (M, g) as above. Consider also any wave operator Lg := �g + aαDα + V , where

au ∈ O(v−1r
− 1

2 ), av ∈ O((−u)−1r
− 1

2 ), aI ∈ O(f
1
2 r

− 3
2 ), V ∈ O(f 1+η

),

for some η > 0. Consider any C2-solution φ of Lgφ = 0, which vanishes at I = {v = ∞, u < 0} ∪ {u = −∞, v > 0} faster

than any power of r (in an L2-sense). Then, φ also vanishes near I.

Theorem (Alexakis-Schlue-S., 2013)

Consider (M, g) as above. Consider also any wave operator Lg := �g + aαDα + V , where

au ∈ O(v−1f
− 1

3 r
− 1

2 ), av ∈ O((−u)−1f
− 1

3 r
− 1

2 ), aI ∈ O(f
1
6 r

− 3
2 ), V ∈ O(1).

Consider any C2-solution φ of Lgφ = 0, which vanishes at I faster than any power of exp(r4/3) (in an L2-sense). Then, φ

also vanishes near I.
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Final Comments

Conclusions

Roughly, if φ vanishes to infinite order at a certain part of the null infinity,
then φ vanishes in a neighborhood in the physical interior.

1 Connection between pseudoconvexity (PDE and geometric notion)
and positive mass (relativistic notion).

2 Connection between unique continuation from infinity and from null
cones, via “conformal inversions”.

3 View of unique continuation from null cones as hyperbolic analogue
of strong unique continuation for elliptic equations.
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Final Comments

The End

Thank you for your attention!
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Appendix

Section 5

Appendix
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Appendix Carleman Estimates

Statement of the Estimates

Main tool for hyperbolic SUC is Carleman estimate.

(For our main results, this is the inverted setting.)

General form:

‖e−λF (f )�gφ‖2
L2 & λ

∑
α

‖e−λF (f )AαDαφ‖2
L2 + λ

3‖e−λF (f )Bφ‖2
L2 .

λ� 1.

F (fε) is a reparametrization of fε.

Aα, B are positive weights that blow up or decay at {f = 0}.

Proof of Carleman estimate is purely geometric.
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Appendix Carleman Estimates

Main Ideas

Carleman estimate can be thought of as an energy estimate for �g , but:

1 We want boundary terms to vanish.

2 We want bulk terms to be positive.

Objective (1) achieved by:

Vanishing assumptions for φ at f = 0.

Cutoff functions for f = f0 > 0.

Objective (2) achieved using a positive commutator.

Consider wave equation not for φ, but for ψ = Fφ.
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Appendix Carleman Estimates

Positive Commutators

To ensure the bulk term is positive:
1 Bulk terms containing derivative of φ tangent to level sets of F :

These are positive only when level sets of F are pseudoconvex.
Thus, F = f is a candidate.

2 Bulk terms containing φ and derivative normal to level sets of F :

Additional freedom: any reparametrization F ◦ F = F ◦ f (where
F ′ > 0) produces same level sets.
Find reparametrization F (f ) so these bulk terms are positive.
Many valid choices of F—as long as F grows fast enough.

Arick Shao (Imperial College London) Unique Continuation 43 / 46



Appendix Carleman Estimates

Some Features

Weights Aα and B depend on pseudoconvexity and on choice of F (f ).

F (f ) must grow “at least as fast as log f ” (but cannot be log itself).

(Ionescu-Klainerman) Choose F = log f + correction.

Decaying potential case: |V | . f 1+, requires ∞-order vanishing of φ.

(New) Choose F = −f −2/3.

Bounded potential case: |V | . 1, requires exponential vanishing of φ.
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Appendix Further Results

Finite-Order Vanishing

Can we somehow do away with the infinite-order vanishing assumption?

Cannot do so while remaining local near infinity (counterexamples).

(Alexakis-S.) Yes on Minkowski spacetime, if we have global
information for φ.

Technical obstruction to finite-order vanishing comes from cutoff function
to make boundary terms vanish.

If we can go from infinity all the way to null cone about origin, then
boundary terms vanishing without cutoff function.

Requires very careful choice of reparametrization of f .
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Appendix Further Results

Nonlinear Equations

The finite-order vanishing theorems have a new obstruction:

Linear potential must also be small.

(Alexakis-S.) However, for some nonlinear equations, we can treat
nonlinearity directly within Carleman estimates:

Focusing, subconformal nonlinearity.

Defocusing, conformal and superconformal nonlinearity.

In these cases, can eliminate smallness assumption.

(Alexakis-S.) These nonlinear Carleman estimates have other applications:

Final states.

Formation of singularities.
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