Correspondence and Rigidity Results on Asymptotically Anti-de Sitter Spacetimes

Arick Shao

Queen Mary University of London

BIRS-CMO Workshop Time-like Boundaries in General Relativistic Evolution Problems 1 August, 2019

Includes joint work with G. Holzegel (Imperial College London)

Section 1

Introduction

3

イロト イヨト イヨト イヨト

Correspondence and Holography

Outstanding problem in theoretical physics:

• Reconciling Einstein's theory of gravity with quantum field theories.

Influential research direction:

- AdS/CFT correspondence
- (AdS: Anti-de Sitter)
- (CFT: Conformal field theory)

 $AdS/CFT \Rightarrow$ holographic principle:

• Gravitational theory on spacetime encoded in some theory on its boundary (of one less dimension).

(日) (同) (三) (三)

Original paper*: 12154 12201 12381 12869 13156 13278 13964 14577 14769 citations.[†]

- J. Maldacena, The large N limit of superconformal field theories and supergravity (1999)
- Data from http://inspirehep.net/record/451647/citations.

What's Missing?

In AdS context, little rigorous mathematics for:

- Positive statements of this principle.
- Precise formulations of this principle.

In particular, in dynamical (non-stationary) settings.

Main questions:

- Rigorous statements toward holographic correspondences?
- Proofs of these statements?
- Mechanisms behind such correspondences?

General Relativity

Gravity described by Einstein's theory of general relativity:

- Spacetime: (n + 1)-dimensional Lorentzian manifold $(\mathcal{M}, \mathbf{g})$.
- g: Lorentzian metric, with signature $(-, +, \dots, +)$.

No matter fields \Rightarrow g satisfies Einstein-vacuum equations (EVE):

$$\operatorname{Ric}_{\mathbf{g}} = \frac{2\Lambda}{n-1}\mathbf{g}.$$

- Ricg: Ricci curvature of g.
- $\Lambda \in \mathbb{R}$: Cosmological constant.

Anti-de Sitter Spacetime

Anti-de Sitter (AdS) spacetime:

- Maximally symmetric solution of EVE, with $\Lambda = \frac{-n(n-1)}{2}$.
- $\Lambda < 0$ analogue of Minkowski spacetime.
- Lorentzian analogue of hyperbolic space.

Global representation of AdS spacetime:

$$(\mathbb{R}_t \times \mathbb{R}_x^n, \mathbf{g}_0), \qquad \mathbf{g}_0 := (1+r^2)^{-1} dr^2 - (1+r^2) dt^2 + r^2 \mathring{\gamma}.$$

• $\mathring{\gamma}$: Round metric for unit sphere \mathbb{S}^{n-1} .

The Conformal Boundary

Conformal AdS, mod \mathbb{S}^{n-1} .

Consider inverted radius $\rho := r^{-1}$:

$$\mathbf{g}_0 =
ho^{-2} \left[(1+
ho^2)^{-1} d
ho^2 - (1+
ho^2) dt^2 + \mathring{\gamma}
ight].$$

•
$$\rho^2 \mathbf{g}_0$$
: smooth at $\rho = 0 \ (r = \infty)$

Formally attach boundary at " $\rho = 0$ ":

$$(\mathscr{I} \simeq \mathbb{R}_t \times \mathbb{S}^{n-1}, \ \mathring{\mathfrak{g}} := -dt^2 + \mathring{\gamma}).$$

- *I*: conformal boundary of AdS:
- g: (Lorentzian) boundary metric.

Asymptotically AdS (aAdS):

• Spacetime with "similar conformal boundary".

A Correspondence Question

Question (Preliminary)

Is there some one-to-one correspondence between:

- aAdS solution of EVE ("gravitational dynamics").
- Data prescribed at conformal boundary I.
 - (Boundary metric g, boundary stress-energy tensor.)

Attempt 1: Formulate in terms of PDEs.

- Given: (Cauchy) data on conformal boundary \mathscr{I} .
- Goal: Solve EVE into interior?

III-Posedness

Bad news: Problem is ill-posed.

• "Initial" hypersurface I is timelike!

For wave equations on bounded domain, need:

- Initial data at t = 0.
- Dirichlet or Neumann data on C.

To solve EVE, need:

- Initial data at t = 0.
- Dirichlet or Neumann data on *I*.
- (Friedrich, 1995), (Enciso–Kamran, 2019)

A Unique Continuation Problem

Attempt 2: Formulate as unique continuation (UC) problem.

- Classical problem in PDEs.
- If a solution exists, then must it be unique?

Question (Correspondence, Informal)

Given two aAdS solutions g_1 , g_2 of EVE:

- If $\mathbf{g}_1, \, \mathbf{g}_2$ have same boundary data on $\mathscr{I}, \, ...$
- ... then must these spacetimes be isometric?

Section 2

Precise Formulations

11/42

æ

イロト イヨト イヨト イヨト

aAdS Manifolds

Goal: Precise description of our aAdS spacetimes.

Step 1: Construction of aAdS manifold *M*.

- Conformal boundary: $\mathscr{I}^n := \mathbb{R}_t \times \mathcal{S}^{n-1}$.
 - S: cross-section of \mathscr{I} .
- Spacetime (near boundary): $\mathscr{M} := (0, \rho_0]_{\rho} \times \mathscr{I}$.

Remark. Formulation allows for:

- General boundary topology/geometry.
- Example: AdS, planar AdS, toroidal AdS.

aAdS manifold \mathcal{M} , mod \mathcal{S} .

aAdS Metrics

Step 2: Construction of aAdS metric g.

• Assume g in Fefferman–Graham (FG) gauge.

$$\mathbf{g}:=\rho^{-2}(\textit{d}\rho^2+g_{\textit{ab}}\,\textit{d}x^{\textit{a}}\textit{d}x^{\textit{b}}).$$

- ρ trivial, decoupled from (t, S)-coordinates.
- g: vertical metric (ρ -indexed family of Lorentzian metrics on \mathscr{I}).

• Assume g has (Lorentzian) boundary limit:

$$\lim_{\rho \searrow 0} \mathsf{g} = \mathring{\mathfrak{g}}.$$

Remark. No loss of generality from FG gauge.

Einstein-Vacuum Spacetimes

Q. What if $(\mathcal{M}, \mathbf{g})$ also satisfies EVE?

• What structure does this impose on g at *I*?

(Fefferman–Graham, 1984, 2007) Ambient metric construction.

- Analytic conformal data on null cone.
- Spacetime given as series expansion in terms of conformal data.
- (Kichenassamy, 2004) Series converges for analytic data.

Idea adapted to aAdS settings:

- Given: Analytic conformal boundary data on *I*.
- Derive: Formal series expansion from \mathscr{I} for g.

Fefferman–Graham Expansions

Fefferman–Graham expansion for vertical metric g:

$$g = \begin{cases} \sum_{k=0}^{\frac{n-1}{2}} \rho^{2k} \mathfrak{g}^{(2k)} + \rho^n \mathfrak{g}^{(n)} + \dots & n \text{ odd,} \\ \sum_{k=0}^{\frac{n}{2}} \rho^{2k} \mathfrak{g}^{(2k)} + \rho^n (\log \rho) \mathfrak{g}^{(*)} + \rho^n \mathfrak{g}^{(n)} + \dots & n \text{ even.} \end{cases}$$

- $\mathfrak{g}^{(0)} = \mathfrak{g}$: freely prescribed (boundary metric).
- $\mathfrak{g}^{(n)}$: also partially free (related to boundary stress-energy tensor).
- Coefficients before $\mathfrak{g}^{(n)}$: determined by $\mathfrak{g}^{(0)}$.
- Coefficients after $\mathfrak{g}^{(n)}$: determined by $\mathfrak{g}^{(0)}$ and $\mathfrak{g}^{(n)}$.

n even \Rightarrow anomalous $\rho^n(\log \rho)$ -term.

• Expansion after $\mathfrak{g}^{(n)}$ is polyhomogeneous (includes $\rho^{l}(\log \rho)^{m}$).

Non-Analytic Settings

Full FG expansion only applicable to analytic settings.

Too restrictive.

Q. What about generic spacetimes?

- With finite regularity (H^{s}, C^{M}) .
- Setting of well-posedness theories of EVE.

Expect. Partial FG expansion (to finite order).

• But, do not wish to assume this a priori.

Partial FG Expansions

Theorem (S., 2019)

Assume g satisfies EVE, and assume

$$\lim_{\rho\searrow 0}g\to \mathring{g},\qquad \|g\|_{\mathcal{C}^{n+2}_{\mathscr{I}}(\mathscr{M})}<\infty,\qquad \|\partial_{\rho}g\|_{\mathcal{C}^{0}_{\mathscr{J}}(\mathscr{M})}<\infty.$$

Then, g has the following expansion near \mathcal{I} :

$$\mathbf{g} = \begin{cases} \sum_{k=0}^{\frac{n-1}{2}} \rho^{2k} \mathfrak{g}^{(2k)} + \rho^n \mathfrak{g}^{(n)} + o(\rho^n) & n \text{ odd,} \\ \sum_{k=0}^{\frac{n}{2}} \rho^{2k} \mathfrak{g}^{(2k)} + \rho^n (\log \rho) \mathfrak{g}^{(*)} + \rho^n \mathfrak{g}^{(n)} + o(\rho^n) & n \text{ even} \end{cases}$$

- $\mathfrak{g}^{(0)} = \mathring{\mathfrak{g}}$ is the boundary metric.
- Coefficients between $\mathfrak{g}^{(0)}$ and $\mathfrak{g}^{(n)}$: determined by $\mathfrak{g}^{(0)}$.
- Derives existence of free $g^{(n)}$ -term.

(Chruściel-Delay-Lee-Skinner, 2005) Riemannian analogue.

Remarks and Examples

Remark. $-\mathfrak{g}^{(2)}$ is the Schouten tensor for \mathfrak{g} :

$$-\mathfrak{g}^{(2)} = \frac{1}{n-2} \left[\mathfrak{Ric} - \frac{1}{2(n-1)} \mathfrak{Sc} \cdot \mathfrak{g} \right], \qquad n > 2.$$

Example

Schwarzschild-AdS spacetime, with mass $M \in \mathbb{R}$:

$$\mathbf{g}_{\mathcal{M}} := \left(1 + r^2 - \frac{M}{r^{n-2}}\right)^{-1} dr^2 - \left(1 + r^2 - \frac{M}{r^{n-2}}\right) dt^2 + r^2 \mathring{\gamma}, \qquad \mathfrak{g}^{(0)} = -dt^2 + \mathring{\gamma}.$$

$$\mathfrak{g}^{(2)} = \begin{cases} -\frac{1}{2}(dt^2 + \mathring{\gamma}) & n > 2, \\ -\frac{1-M}{2}(dt^2 + \mathring{\gamma}) & n = 2, \end{cases} \qquad \mathfrak{g}^{(n)} = \begin{cases} \frac{M}{n}[(n-1)dt^2 + \mathring{\gamma}] & n \notin \{2,4\}, \\ \frac{1}{16}(-dt^2 + \mathring{\gamma}) + \frac{M}{4}(3dt^2 + \mathring{\gamma}) & n = 4. \end{cases}$$

э

Image: A matrix

Return to Correspondence

Thus, boundary data for EVE given by:

- $\mathfrak{g}^{(0)} = \mathfrak{g}$: "Dirichlet branch".
- $\mathfrak{g}^{(n)}$: "Neumann branch".

Question (Correspondence)

Given two aAdS solutions g_1 , g_2 of EVE:

- Assume \mathbf{g}_1 , \mathbf{g}_2 have equivalent values for $\mathfrak{g}^{(0)}$, $\mathfrak{g}^{(n)}$.
- Must g_1 , g_2 be isometric?
- Do $\mathfrak{g}^{(0)}$ and $\mathfrak{g}^{(n)}$ determine solution of EVE?

The correspondence problem.

The State of Affairs

(Biquard, 2008; Anderson–Herzlich, 2008, 2010)

- Analogue in Riemannian/elliptic case.
- If (\mathscr{N},\mathbf{h}) is Riemannian, asymptotically hyperbolic, and Einstein...
- ... then $\mathfrak{h}^{(0)}$, $\mathfrak{h}^{(n)}$ uniquely determine \mathbf{h} .

(Chruściel–Delay, 2011) Stationary Lorentzian settings.

- Answered correspondence question for stationary (*t*-independent) g.
- Still an elliptic problem.

General Lorentzian/hyperbolic case: work in progress.

• (Joint with G. Holzegel).

Section 3

Unique Continuation for Waves

æ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Waves on aAdS Spacetimes

Consider now a model problem:

- UC for Klein–Gordon equation from $\mathscr{I}...$
- ... on fixed aAdS spacetime.

Question (Model Problem)

 $\varphi :$ solution on fixed aAdS spacetime $(\mathscr{M}, \mathbf{g})$ of

$$(\Box_{\mathbf{g}} + \sigma) \varphi = \mathcal{G}(\varphi, \nabla \varphi), \qquad \sigma \in \mathbb{R}.$$

Assume ϕ has zero Dirichlet and Neumann data on \mathscr{I} .

• Is $\phi = 0$ locally near \mathscr{I} ?

The model problem.

Why the Wave Equation?

Crucial step toward main correspondence problem.

- EVE \Rightarrow curvature, connection satisfy nonlinear wave equations.
- Shows main mechanism for uniqueness.

Model problem also has other applications:

- Rigidity results.
- Symmetry extension results.

Remark. The scalar mass σ is essential.

• σ determines asymptotics of ϕ near \mathscr{I} .

Some Intuition

Consider $(\Box_{\mathbf{g}_0} + \sigma) \phi = 0$ on pure AdS:

- (Over)assume ϕ depends only on ρ .
- 2nd-order singular ODE \Rightarrow two branches of solutions:

$$\Phi_{\pm} =
ho^{eta_{\pm}} \sum_{k=0}^{\infty} a_k^{\pm}
ho^k, \qquad eta_{\pm} = rac{n}{2} \pm \sqrt{rac{n^2}{4} - \sigma}.$$

• ϕ_- , ϕ_+ : "Dirichlet and Neumann branches".

• For ϕ to vanish, must at least eliminate both branches:

$$\lim_{\rho\searrow 0}(\rho^{-\beta_+}\varphi)\to 0.$$

Remark. Other ways to derive asymptotics ("FG", energy).

The Main Theorem I

Theorem (Holzegel–S., 2017)

- Let $(\mathcal{M}, \mathbf{g})$ be an aAdS spacetime.
 - Assume g satisfies the "null convexity criterion".
- Let ϕ be a C²-solution of
 - $|(\Box_{\mathbf{g}} + \sigma)\varphi| \leq \rho^{2+p} |\nabla_{t,\rho,\mathbb{S}^2} \varphi| + \rho^p |\varphi|, \qquad (\sigma \in \mathbb{R}, \ p > 0).$

• Suppose ϕ satisfies vanishing condition as $\rho \searrow 0$: $|\rho^{-\beta+}\phi| + |\nabla_{t,\rho,\mathbb{S}^2}(\rho^{-\beta+1}\phi)| \rightarrow 0$, if $\sigma \le (n^2-1)/4$, $|\rho^{-\frac{n+1}{2}}\phi| + |\nabla_{t,\rho,\mathbb{S}^2}(\rho^{-\frac{n-1}{2}}\phi)| \rightarrow 0$, if $\sigma > (n^2-1)/4$.

• Vanishing condition holds on large enough time interval,

$$0 \leq t \leq t_0$$

Then, φ vanishes in the interior, near $\mathscr{I} \cap \{0 < t < t_0\}$.

Some Remarks

- First such correspondence result in dynamical, non-analytic setting.
- 2 Vanishing condition: optimal when $\sigma \leq (n^2 1)/4$.
 - $\sigma = (n^2 1)/4$: conformal mass.
- 8 Result also holds for tensorial waves.

Below, we focus on:

- Null convexity criterion.
- Sufficiently large time interval.

Sufficiently Large Times

The sufficiently large time interval assumption is new.

- Needed for non-analytic wave equations.
- AdS: Need $t_0 > \pi$ (more than 1 AdS cycle).

Short Time Intervals

Conjecture

On AdS, result is false if $t_0 < \pi$.

Special property of AdS geometry:

- \exists family of future null geodesics from $\mathscr{I} \cap \{t = 0\}...$
- ... that are arbitrarily close to $\mathscr{I}...$
- ... and refocus at $\mathscr{I} \cap \{t = \pi\}$.

Null geodesics near $\mathscr{I}.$

Idea: Counterexamples via geometric optics or Gaussian beams.

- Construct solutions concentrated near these null geodesics.
- Similar to (Alinhac–Baouendi), (Ralston; Sbierski).

Null Geodesics

Extend ideas to aAdS spacetime $(\mathcal{M}, \mathbf{g})$.

• Consider (t-parametrized) null geodesics near *I*:

 $\Lambda(t) = (\rho(t), \lambda(t)).$

- λ : (coordinate) projection of Λ onto \mathscr{I} .
- $0 < \dot{\rho}(0) \ll 1$, and $\dot{\lambda}(0)$ almost \mathring{g} -null.

Null geodesics near ${\mathscr I}.$

Observation. Geodesic equation for ρ :

$$\ddot{\rho} - \frac{1}{2} \mathscr{L}_t \mathfrak{g}^{(0)}(\dot{\lambda},\dot{\lambda}) \cdot \dot{\rho} - \mathfrak{g}^{(2)}(\dot{\lambda},\dot{\lambda}) \cdot \rho + \text{I.o.t.} = 0.$$

- Leading-order behavior: damped harmonic oscillator.
- Geodesic motion driven by $\mathfrak{g}^{(2)}$ and $\mathscr{L}_t \mathfrak{g}^{(0)}$ (in null directions).

The Geodesic Return Theorem

Theorem (S, 2019)

Suppose the following conditions hold:

- $-\mathfrak{g}^{(2)}(X,X) \geq C > 0, \qquad |\mathscr{L}_t \mathfrak{g}^{(0)}(X,X)| \leq B \ll C.$
- X: any t-normalized $\mathfrak{g}^{(0)}$ -null vector on \mathscr{I} .

Then, there exists $t_0 = t_0(C, B) > 0$ such that:

- If: Λ is a g-null geodesic starting from \mathscr{I} at t = 0.
- If: Initial angle between Λ and \mathscr{I} is ε -small.
- Then: Λ remains ε -close to \mathscr{I} .
- Then: Λ returns to \mathscr{I} before $t = t_0$.

Also: t_0 is the same as in the main result!

Null geodesics near \mathscr{I} .

Finding Pseudoconvexity

Key step in proof of main result.

- Find pseudoconvex foliation of hypersurfaces near \mathscr{I} .
- Prove Carleman estimates near \mathscr{I} using this foliation.
- Remark. I fails to be pseudoconvex.

Lemma (Null Convexity Criterion)

Suppose the following conditions hold:

$$-\mathfrak{g}^{(2)}(X,X)\geq C>0, \qquad |\mathscr{L}_t\mathfrak{g}^{(0)}|\leq B\ll C$$

• X: t-normalized $\mathfrak{g}^{(0)}$ -null vector.

Then, there is a pseudoconvex foliation near \mathscr{I} ...

- ... spanning a sufficiently long time interval $[0, t_0]$ on \mathscr{I} .
- $t_0 = t_0(C, B)$ same as before.


```
near \mathscr{I} (in red).
```

The Main Theorem II

Theorem (Holzegel-S., 2017)

Let (\mathscr{M},\mathbf{g}) be an aAdS spacetime, satisfying the conditions

 $-\mathfrak{g}^{(2)}(X,X) \geq C > 0, \qquad |\mathscr{L}_t\mathfrak{g}^{(0)}| \leq B \ll C.$

Let ϕ be a C²-solution of

 $|(\Box_{\mathbf{g}}+\sigma)\varphi|\leq \rho^{2+\rho}|\nabla_{t,\rho,\mathbb{S}^2}\varphi|+\rho^{\rho}|\varphi|,\qquad (\sigma\in\mathbb{R},\ \rho>0).$

• Suppose ϕ satisfies vanishing condition as $\rho \searrow 0$:

$$\begin{split} |\rho^{-\beta_+}\varphi| + |\nabla_{t,\rho,\mathbb{S}^2}(\rho^{-\beta_++1}\varphi)| \to 0, \quad \text{if } \sigma \leq (n^2-1)/4, \\ |\rho^{-\frac{n+1}{2}}\varphi| + |\nabla_{t,\rho,\mathbb{S}^2}(\rho^{-\frac{n-1}{2}}\varphi)| \to 0, \quad \text{if } \sigma \geq (n^2-1)/4. \end{split}$$

Vanishing condition holds on large enough time interval,

 $0 \leq t \leq t_0 = t_0(C, B).$

Then, φ vanishes in the interior, near $\mathscr{I} \cap \{0 < t < t_0\}$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ����

Einstein-Vacuum Spacetimes

Previous theorem needs not assume spacetime is vacuum.

If $(\mathcal{M}, \mathbf{g})$ also satisfies EVE:

- Null convexity criterion depends only on $\mathfrak{g}^{(0)} = \mathring{\mathfrak{g}}$.
- $(\mathscr{I}, \mathfrak{g})$ is static: null convexity criterion $\Leftrightarrow \mathcal{S}$ has positive Ricci curvature.

Example

- AdS, Schwarzschild-AdS, and Kerr-AdS satisfy the criterion.
- Planar/toroidal AdS ($\mathbb{R} \times \mathbb{S}^{n-1} \to \mathbb{R} \times \mathbb{R}^{n-1}$) fails the criterion.

Section 4

Applications

Arick Shao (QMUL)

Correspondence & Rigidity on aAdS

34 / 42

3

Rigidity of AdS

(Holzegel-S., 2015) Linearized EVE about AdS.

- Solution: divergence-free Weyl field V.
- Theorem: If $\mathbf{V} \to 0$ fast enough at \mathscr{I} , for timespan $> \pi$, then $\mathbf{V} = 0$ inside.
- Idea: V satisfies tensorial wave equation.

Question (Rigidity of AdS)

Nonlinear version of the above.

- Assume: Weyl curvature $\mathbf{W} \rightarrow 0$ fast enough at \mathscr{I} , for timespan > π .
- Goal: (*M*, g) must be AdS spacetime.

Extension of Symmetries

Question (Inheritance of Symmetries)

If $(\mathscr{I}, \mathring{g})$ has a symmetry, then is it also inherited by $(\mathscr{M}, \mathbf{g})$?

Theorem (Holzegel–S., TBA)

Suppose $n \ge 3$, and suppose (\mathcal{M}, g) satisfies EVE and the null convexity criterion. If there is a vector field Z on \mathscr{I} such that

$$\mathscr{L}_{Z}\mathfrak{g}^{(0)} = \mathscr{L}_{Z}\mathring{\mathfrak{g}} = 0, \qquad \mathscr{L}_{Z}\mathfrak{g}^{(n)} = 0,$$

on large enough time interval, then Z extends to a Killing vector field near \mathcal{I} .

(Chruściel–Delay, 2011) Result for stationary spacetimes.

イロト イヨト イヨト -

Rigidity of Kerr-AdS

Corollary (Rigidity of Schwarzschild-AdS)

If $\mathfrak{g}^{(0)}, \mathfrak{g}^{(n)}$ are spherically symmetric, then:

- (*M*, g) must be Schwarzschild-AdS...
- ... up to the photon sphere.

Question (Rigidity of Kerr-AdS)

If $\mathfrak{g}^{(0)}, \mathfrak{g}^{(n)}$ are axially symmetric, then must $(\mathcal{M}, \mathbf{g})$ be Kerr-AdS?

(日)

Proof Outline

Key steps to proving symmetry extension:

1 Guess extension of Z into \mathcal{M} .

Pind system of equations for which UC applies.

- Similar to other UC results in relativity.
- (Ionescu-Klainerman, Alexakis-Ionescu-Klainerman, Alexakis-Schlue)

3 Connect assumptions $\mathscr{L}_Z g^{(0)} = \mathscr{L}_Z g^{(n)} = 0$ to UC result.

• From extended (partial) FG expansions.

Step 1. FG gauge makes this easy:

• Transport Z along ρ -coordinate.

The Wave-Transport System

Step 2. Derive closed system of:

• Wave equations for components ϕ of $\mathscr{L}_Z W$:

 $(\Box_{\mathbf{g}} + c_{\varphi} + \dots) \varphi = \mathsf{l.o.t.}(\varphi, \nabla \varphi, \psi, \nabla \psi).$

• Transport equations for components ψ of $\mathscr{L}_Z \mathbf{g}$:

 $(\nabla_{\rho} + c_{\psi})\psi = \mathsf{l.o.t.}(\phi, \psi), \qquad (\nabla_{\rho} + c_{\psi})\nabla\psi = \mathsf{l.o.t.}(\phi, \nabla\phi, \psi, \nabla\psi).$

Can derive coupled Carleman estimates for ϕ and ψ .

- If $(\phi, \psi) \to 0$ sufficiently fast at \mathscr{I} , for large enough time interval...
- ...then (ϕ, ψ) vanish near \mathscr{I} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Derivation of Vanishing

Step 3. Derive vanishing conditions for (φ,ψ) at $\mathscr{I}.$

• FG expansions for (components of) \mathbf{g} , \mathbf{W} :

$$\mathbf{g} = \sum_{k=0}^{n-1} \rho^k \mathfrak{g}^{(k)} + \rho^n (\log \rho) \mathfrak{g}^{(*)} + \rho^n \mathfrak{g}^{(n)} + o(\rho^n),$$

$$\mathbf{W}^{"} = \sum_{k=0}^{n-1} \rho^k \mathfrak{w}^{(k)} + \rho^n (\log \rho) \mathfrak{w}^{(*)} + \rho^n \mathfrak{w}^{(n)} + o(\rho^n).$$

•
$$\mathfrak{g}^{(k)}$$
's and $\mathfrak{w}^{(k)}$'s only depend on $\mathfrak{g}^{(0)}$ and $\mathfrak{g}^{(n)}$.

•
$$\Rightarrow \mathscr{L}_{Z}\mathfrak{g}^{(k)} = 0$$
 and $\mathscr{L}_{Z}\mathfrak{w}^{(k)} = 0$

- \Rightarrow High-order vanishing for (ϕ, ψ) .
- Equations from Step 2 $\Rightarrow \infty$ -order vanishing for (ϕ, ψ) .

The Correspondence Problem

Question

Assuming EVE, do $\mathfrak{g}^{(0)}, \mathfrak{g}^{(n)}$ determine g (near \mathscr{I})?

• Work in progress (with G. Holzegel).

Idea. W satisfies tensor wave equation.

- Difficulty. Two systems of wave equations, with two metrics.
- \Rightarrow Terms with $\mathbf{g}_1 \mathbf{g}_2$ and derivatives.

Challenge. Finding a closed system of PDEs.

- (Biquard) Found closed system in elliptic case.
- Hyperbolic case controls one less derivative.

Additional Questions

Question

Construction of counterexamples to UC?

In particular, for short time intervals.

Question

Correspondence problems for Einstein + matter?

- Einstein-scalar, Einstein-Maxwell, Einstein-Vlasov.
- $\mathfrak{g}^{(k)}$'s may also depend on matter field.
- Q. Can boundary data for matter yield better/worse results?
- Work in progress (Alex McGill).