Unique Continuation for Waves,
Carleman Estimates, and Applications

Arick Shao

Queen Mary University of London

Leeds Analysis and Applications Seminar
14 February, 2018

Arick Shao (QMUL) Unique Continuation 1/36



@ Recent unique continuation (UC) results for wave equations.
e UC “from infinity”.

@ Theory of UC.
e Why is “classical” theory not enough?

© Some ideas behind Carleman estimates.
e Main analysis tool for UC.

© (Other) Applications of Carleman estimates

e Focus on control theory.
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Unique Continuation from Infinity

Section 1

Unique Continuation from Infinity
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Unique Continuation from Infinity

Wave Equations

Consider the wave equation:
O :=(—0?+A)d=0 ¢:R;xRT—=R.
@ Generalisations: linear/nonlinear waves, systems, geometric waves.

@ Physics: Maxwell equations, Yang-Mills equations, Einstein equations, fluids

Initial value problem:

Ué = F(t,x, , Do), Gle=o = o, 0¢bli=0 = P1.
@ In general, 3! solution for “nice” initial data (o, $1).

@ Solution “depends continuously on” initial data.
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Unique Continuation from Infinity

Radiation

RI+L),

Propagation of waves (
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Regular solutions of [l = 0:

@ Propagate at fixed, finite speed.

@ Decay in space and time at known rates.

Can make sense of “asymptotics at infinity":

@ Leading order coefficient: radiation field.

Question (UC from infinity)

Are solutions of wave equations determined by its
“data at infinity”?
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Unique Continuation from Infinity

Minkowski Geometry

Theme: Geometric viewpoint for studying wave equations.
@ Robust techniques applicable to many curved backgrounds.

@ Applications to problems in relativity.

Natural setting: Minkowski spacetime (R*", m).
@ Minkowski metric: m:= —df 4+ d(x})2 + - - - + d(x")%.
@ Setting of special relativity.
o = m“ﬁv‘xﬁ: natural second-order PDO in Minkowski geometry.

e Analogue of A in Euclidean geometry.
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Unique Continuation from Infinity

Infinity

Infinity visualised via Penrose compactification.

@ Conformal transformation m +— Q?m.

@ (R, O?m) isometrically embeds into relatively
compact region in R x S".

Infinity realised as boundary of shaded region.

@ Future/past null infinity J%: Null geodesics
(bicharacteristics of [1) terminate here.

@ Radiation field manifested at J=.

For this talk, useful for drawing pictures.

Previous picture, projected.

Arick Shao (QMUL) Unique Continuation 7 /36



Unique Continuation from Infinity

Main Questions

Question (UC from infinity)

Does & on some part of 3= determine & inside?
@ General linear/nonlinear waves, e.g., (O + Vx+ V)¢ =07

@ Geometric waves on curved backgrounds: Oz = g“BV‘ZXﬁ<b =oca?

For linear waves:
@ If d =0 on some part of J%, then is ¢ = 0 inside?

@ Are nonradiating waves trivial?
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Unique Continuation from Infinity

Scattering Results

(Friedlander) Isometry between initial data (at
t = 0) and radiation field (at J7).

@ Applies only to free waves (¢ = 0).

Various generalisations:

@ Product manifolds R x X, special nonlinear waves,
special black hole spacetimes.

However, we are more interested in:

@ |ll-posed settings: cannot solve the wave equation.

@ Other linear and geometric waves.

Red: Solve forward from t = 0.

Blue: Solve backward from 37
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Unique Continuation from Infinity
Result Near Infinity

Theorem ( )

Assume & is a solution, near Ji, of
Ob + Vxd + Vb =0,
where X, V decay sufficiently toward I .

If &, V vanish to co-order on (% + €)%, then ¢ =0 in the
interior near (% +¢)J%.

Remark. The oo-order vanishing is optimal.
@ Counterexamples if ¢ vanishes only to finite order.
@ On R'™" (n>2), can take ¢ = Vir ("2,
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Unique Continuation from Infinity

Geometric Robustness

Can UC result be extended to curved backgrounds?

@ Asymptotically flat spacetimes: those with “similar structure of infinity".

g+
The main result extends to a large class of (both stationary
and dynamic) asymptotically flat spacetimes, including: AR
@ Perturbations of Minkowski spacetimes.
@ Schwarzschild and Kerr spacetimes, and perturbations. 9=

For (2), result can be localised near eJ™* .
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Unique Continuation from Infinity

Finite-Order Vanishing?

Question
On Minkowski spacetime (R*", m):

@ Can oco-order vanishing condition be somehow removed?

Recall. Counterexamples VAr~("=2).
@ Note that these blow up at r=20.

Idea. Impose global regularity for ¢, up to r=0.
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Unique Continuation from Infinity

The Global Result

Theorem ( )

Assume ¢ is a regular solution in D of

O + Vp =0, V| < C,
where V also decays toward J* as before.

If &, V vanish to order A > Ay at %Ji, with Ao depending
on C, then ¢ = 0 everywhere on D (and hence R**").

Remark. The L°-assumption on V is necessary.

@ Otherwise, there are counterexamples.
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Unique Continuation from Infinity
The Global Nonlinear Theorem

Can some special wave equations be better behaved?

Theorem ( )

Suppose & is a regular solution in D of

O+ Vil ‘o =0, p>1,

where V satisfies a monotonicity property (depending on p).

If &, V& vanishes to order 6 at %Ji for any & > 0, then & =0 on D.

Idea. Estimates not for OJ, but for
Ov,pd =0 + V- [d|P 1.
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Unique Continuation Theory

Section 2

Unique Continuation Theory
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Unique Continuation Theory

Unique Continuation

Unique continuation (UC): classical problem in PDEs.
@ When we cannot solve a PDE, we can still ask if solutions are unique.

Problem (Unique Continuation)

Suppose:
@ ¢ solves (g + Vx+ V)p =0.
@ ¢,V vanish on a hypersurface X.

Must & vanish on one side of £7

In particular, we are interested in £ C J*. J
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Unique Continuation Theory
The Classical Theory

Ancient theory: analytic PDE, noncharacteristic X.
@ (Cauchy—Kovalevskaya) Existence, uniqueness of analytic solutions.
@ (Holmgren, F. John) Solution unique even in nonanalytic classes.

Classical theory for non-analytic equations (Calderén, Hormander):
@ Crucial point: pseudoconvexity of X.
@ X pseudoconvex = Carleman estimates = UC from XZ.

@ (Alinhac—Baouendi) I not pseudoconvex = 3 X, V with counterexamples.

Remark. Classical UC results are purely local.

@ UC from a small neighbourhood of P € X.
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Unique Continuation Theory
A Geometric Perspective

(Lerner—Robbiano) The following are equivalent:
@ XY :={f=0}is pseudoconvex (wrt Lz and f).
@ VX, X) < 0on Z, whenever g(X, X) = Xf=0.

@ —fis convex on I, in the tangent null (bicharacteristic) directions.

In this case, UC from X to f> 0.

Visual interpretation: £ 4 null geodesic
|

@ Null geodesic (bicharacteristic) hitting £ tangentially...

@ ... lies in {f < 0} nearby. 0 P f<0

|
|
|
I
-~ |
|
|
|

Note. Pseudoconvexity is conformally invariant.
@ Sensible to take & C J*.

X pseudoconvex at P.
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Unique Continuation Theory
Zero Pseudoconvexity

Bad news. J* (barely) fails to be pseudoconvex.

@ "“Zero pseudoconvex”.

Y is zero pseudoconvex & X is ruled by null geodesics.

@ Need more refined understanding of geometry near J=.

Possible loss of local UC in zero pseudoconvex settings:
(Alinhac-Baouendi) Counterexample to local UC when Z = {x, = 0} C R*"".
(Kenig—Ruiz—Sogge) Global UC from all of X ={x, = 0}.

Main result: Semi-global UC (from “large enough” hypersurface (3 + £)JF).

Main result: Local UC (locally from eJ).
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Unique Continuation Theory

Carleman Estimates

Carleman estimates: main technical tool for proving UC.
@ Weighted integral estimates, with free parameter A > 0.

@ (Carleman, Calderén, Hérmander, Tataru, ...)

A[ (VR + [6R)] < J D0 P.
Q Q

@ (): spacetime region.

@ wy: weight function (constructed from pseudoconvexity).

¥ pseudoconvex = (local) Carleman estimate near L.

@ Q. Zero pseudoconvex = “degenerate” Carleman estimates?
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Carleman Estimates: Some Key Ideas

Section 3

Carleman Estimates: Some Key ldeas
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Carleman Estimates: Some Key |deas
Result Near J=: Pseudoconvexity

Recall. UC result on Minkowski:
@ UC from (% 4 &I,

Consider hyperboloids in R

@ Blue: level sets of f=F~# — £,

e These are only zero pseudoconvex.
@ Red: “warped” level sets of f,.

o These are (inward) pseudoconvex.
o Pseudoconvexity degenerates at J*.
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Carleman Estimates: Some Key Ideas

Result Near J=: Infinite-Order Vanishing

Can derive Carleman estimate roughly of the form:

J fEA(w|v¢|2+¢2)§A1J f3A|D¢|2+j P VOP + ).
Q Q

fr=00

Need boundary term at f, = +oo to vanish:
@ Need 4A-order vanishing for ¢, V.

Must assume ¢,V vanish at f, = fy.
@ In practice, done using cutoff function.
@ = For UC, need to take A " co.

@ = Need oco-order vanishing at TRE,
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Carleman Estimates: Some Key Ideas
Global Result: Carleman Near J*

Recall. Global UC result on Minkowski:

@ Global UC from %Ji, with finite-order vanishing.

Carleman estimate in this setting: (roughly)

| Pz sat] Pioep+|  Pver+ e
Q Q f=00

o fi=~—*¢.

@ Remark. Also need lower-order modification of 2*.

Remark. No |Vd|?-term on LHS:

@ Since level sets of f are zero pseudoconvex.

@ Can only handle equations of the form (O + V)¢ = 0.
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Carleman Estimates: Some Key Ideas

Global Result: Global Carleman

Arick Shao (QMUL)

To avoid oco-order vanishing:
@ = Avoid taking A " co.

@ = Avoid using cutoff function near f= f,.

Idea. Note weight 2 vanishes on f= 0.
@ f=0: null cone about origin (|t = r).
@ If Carleman estimate can be pushed to f= 0, then we do not

need a cutoff to kill the f= f; boundary term.

v

Can derive global Carleman estimate: (roughly)

| Pz sat| Pioep+|  P0ver+e?),
D D

f=00
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Carleman Estimates: Some Key Ideas
Global Carleman: Finite Domains

Idea. Estimate holds on finite spacetime domains: u
@ Given U C R

er AP <At Lm) A O +J (...).

oUND

@ Extra boundary term on 0U.

@ Novel feature: No boundary term anywhere on D.

The finite setting allows for one more trick:
@ Another modification of weight f=> can reinsert [V|? in LHS:

J PAWVOP + ¢2) < A*J
UunD

un

A O +J (...).
D

ounND

@ Control of ¢ on “shaded bulk region” by ¢ on “black boundary".
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Applications of Carleman Estimates

Section 4

Applications of Carleman Estimates
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Applications of Carleman Estimates
Sample of Applications

Geometric UC results have applications to relativity: J

@ (Alexakis—Schlue) Nonexistence of time-periodic vacuum spacetimes.

Singularity formation for NLW (subconformal focusing): J

@ Finite Carleman estimate = information about behaviour of singularities.

Control theory (*): Exact controllability of wave equations. J

Inverse problems: Determining PDE from measurements of its solutions.
@ Lower-order coefficients X, V.

@ Metric (principal coefficients) g.
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Applications of Carleman Estimates
Exact Controllability

Recall. O C R": open, bounded, smooth boundary.

The following initial-boundary value problem has a unique solution:
@ Wave equation: Lo =(0+Vx+ V)b =0o0n [T_, T4] x Q.
@ Initial condition: (¢, 0:d)|e—7_ = (g, 7 ).

@ Boundary condition: ¢[(7_,7,)x80 = db.

Problem (Exact Dirichlet boundary controllability)

FixT"C (T_, Ty) x 0Q).
@ Given any “initial” and “final” data (d)oi,d)li) € 1?(Q) x HYQ)..
@ ... can one find Dirichlet boundary data ¢, € L2(T"), such that...
@ ... the solution of the above satisfies (¢, 0:d)|=1, = (bd, d7)?

In other words, can solutions be controlled via Dirichlet boundary data?

v
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Applications of Carleman Estimates
Basic Principles

Finite speed of propagation = lower-bound on timespan T, — T_.

@ Information from ¢p needs time to travel to all of Q.

(Dolecki—Russell, Lions) Hilbert uniqueness method (HUM)

Preceding problem can be solved if and only if:

@ For any solution 1 satisfying
L7 79xa =0, (W,dW)le=7, = (W5, V1), WYlr ,7,)x00 =0...
@ ...the following observability inequality holds:
||(1I)arall)l+)”H1(Q]><L2(Q) < CHavlb”LZ(ry

@ 0yy: Neumann data.

@ Cindependent of .
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Applications of Carleman Estimates

Methods for Observability

Thus, exact controllability is reduced to proving observability. )

I. Fourier series methods: handles (—92 + 32 + )¢ = 0. J

Il. Multiplier (energy) methods: handles O = 0.

@ And some perturbations.

1. Microlocal methods:
@ Most precise, optimal (w.r.t. control region) results.

@ (Bardos-Lebeau—Rauch) Geometric control condition.

@ However, only applies to time-independent (or time-analytic) equations.
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Applications of Carleman Estimates
Carleman Estimate Methods

IV. Carleman estimates: very robust method for observability.

@ Handles time-dependent equations, without assuming analyticity.

Via multiplier/Carleman methods, can show:
@ Observability estimate ||(bg, W1 )|l (a)xi2ca) < ClIOv| 2 -
@ .withT:=(T_,T.) x{x€0Q | (x—x0)-v >0}
@ xp € R” fixed.

@ Vv: outer unit normal to Q.

Geometric interpretation:

@ (t,x) €T & ray from xg through x is leaving Q at x.
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Applications of Carleman Estimates
Novel Improvements |

Previous Carleman estimates + energy estimates = observability.

@ With some novel features.

A. Region I" of control can be improved.

@ [ can be time-dependent:

F=[(T, Ty) x{x€dQ | (x—x0) - v >0} N Dy, 0)

@ D: exterior of null cone about (to, x0).

Theorem (S.)

Exact controllability for general wave equations...

@ ...with Dirichlet control on the above T, restricted to Dy, ;)
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Applications of Carleman Estimates

Novel Improvements Il

What about time-dependent domains with moving boundaries?

U= J {xq.

T— STS T+

B. Carleman estimate proved using Lorentzian-geometric methods.

@ Directly applicable to more general domains U.

@ (x—xp) - Vv > 0 replaced by similar condition, with a “relativistic correction”.

Previous theorem extends to time-dependent domains U :

@ T similar to before, but with “relativistic correction’.

@ Achieves optimal timespan when n=1.
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Applications of Carleman Estimates

Some Final Context

Previous literature for time-dependent domains is sparse:
@ General n: only special cases of U.

o U expanding (Bardos—Chen).
o Self-similar and asymptotically cylindrical (Miranda).

@ n = 1: recent work by various authors.

o Optimal results for special cases (0U = two lines).
o General cases: non-optimal timespan.

Future work. Explore controllability for geometric wave equations.

@ Lorentzian-geometric techniques well-adapted to this analysis.

@ General Lorentzian settings unexplored.
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The End

Thank you for your attention! J
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