Unique Continuation for Waves, Carleman Estimates, and Applications

Arick Shao

Queen Mary University of London

Leeds Analysis and Applications Seminar 14 February, 2018

Outline

- Recent unique continuation (UC) results for wave equations.
 - UC "from infinity".
- 2 Theory of UC.
 - Why is "classical" theory not enough?
- Some ideas behind Carleman estimates.
 - Main analysis tool for UC.
- Other) Applications of Carleman estimates
 - Focus on control theory.

Section 1

Unique Continuation from Infinity

Wave Equations

Consider the wave equation:

$$\Box \phi := (-\partial_t^2 + \Delta_x) \phi = 0, \qquad \phi : \mathbb{R}_t \times \mathbb{R}_x^n \to \mathbb{R}.$$

- Generalisations: linear/nonlinear waves, systems, geometric waves.
- Physics: Maxwell equations, Yang-Mills equations, Einstein equations, fluids

Initial value problem:

$$\Box \phi = F(t, x, \phi, D\phi), \qquad \phi|_{t=0} = \phi_0, \quad \partial_t \phi|_{t=0} = \phi_1.$$

- In general, \exists ! solution for "nice" initial data (ϕ_0, ϕ_1) .
- Solution "depends continuously on" initial data.

Radiation

Regular solutions of $\Box \phi = 0$:

- Propagate at fixed, finite speed.
- Decay in space and time at known rates.

Can make sense of "asymptotics at infinity":

• Leading order coefficient: radiation field.

Question (UC from infinity)

Are solutions of wave equations determined by its "data at infinity"?

Minkowski Geometry

Theme: Geometric viewpoint for studying wave equations.

- Robust techniques applicable to many curved backgrounds.
- Applications to problems in relativity.

Natural setting: Minkowski spacetime (\mathbb{R}^{1+n} , m).

- Minkowski metric: $m := -dt^2 + d(x^1)^2 + \cdots + d(x^n)^2$.
- Setting of special relativity.
- $\Box = m^{\alpha\beta} \nabla_{\alpha\beta}$: natural second-order PDO in Minkowski geometry.
 - Analogue of Δ in Euclidean geometry.

Infinity

Previous picture, projected.

Infinity visualised via Penrose compactification.

- Conformal transformation $m \mapsto \Omega^2 m$.
- $(\mathbb{R}^{1+n}, \Omega^2 m)$ isometrically embeds into relatively compact region in $\mathbb{R} \times \mathbb{S}^n$.

Infinity realised as boundary of shaded region.

- Future/past null infinity J[±]: Null geodesics (bicharacteristics of □) terminate here.
- Radiation field manifested at J[±].

For this talk, useful for drawing pictures.

Main Questions

Question (UC from infinity)

Does ϕ on some part of \mathfrak{I}^{\pm} determine ϕ inside?

- General linear/nonlinear waves, e.g., $(\Box + \nabla_X + V)\phi = 0$?
- Geometric waves on curved backgrounds: $\Box_g \varphi = g^{\alpha\beta} \nabla^2_{\alpha\beta} \varphi = \dots$?

For linear waves:

- If $\phi = 0$ on some part of \mathfrak{I}^{\pm} , then is $\phi = 0$ inside?
- Are nonradiating waves trivial?

Scattering Results

(Friedlander) Isometry between initial data (at t = 0) and radiation field (at \mathfrak{I}^+).

• Applies only to free waves ($\Box \phi = 0$).

Red: Solve forward from t = 0.

Blue: Solve backward from \mathfrak{I}^+ .

Various generalisations:

 Product manifolds R × X, special nonlinear waves, special black hole spacetimes.

However, we are more interested in:

- Ill-posed settings: cannot solve the wave equation.
- Other linear and geometric waves.

Result Near Infinity

Theorem (Alexakis-Schlue-S., 2015)

Assume ϕ is a solution, near \mathfrak{I}^{\pm} , of

$$\Box \Phi + \nabla_X \Phi + V \Phi = 0,$$

where X, V decay sufficiently toward \mathfrak{I}^{\pm} .

If ϕ , $\nabla \phi$ vanish to ∞ -order on $(\frac{1}{2} + \epsilon)J^{\pm}$, then $\phi = 0$ in the interior near $(\frac{1}{2} + \epsilon)J^{\pm}$.

Remark. The ∞ -order vanishing is optimal.

- Counterexamples if ϕ vanishes only to finite order.
- On \mathbb{R}^{1+n} (n>2), can take $\phi = \nabla_x^k r^{-(n-2)}$.

Geometric Robustness

Question

Can UC result be extended to curved backgrounds?

• Asymptotically flat spacetimes: those with "similar structure of infinity".

Theorem (Alexakis-Schlue-S., 2015)

The main result extends to a large class of (both stationary and dynamic) asymptotically flat spacetimes, including:

- Perturbations of Minkowski spacetimes.
- 2 Schwarzschild and Kerr spacetimes, and perturbations.

For (2), result can be localised near εJ^{\pm} .

Finite-Order Vanishing?

Question

On Minkowski spacetime (\mathbb{R}^{1+n} , m):

• Can ∞-order vanishing condition be somehow removed?

Recall. Counterexamples $\nabla_x^k r^{-(n-2)}$.

• Note that these blow up at r = 0.

Idea. Impose global regularity for ϕ , up to r = 0.

The Global Result

Theorem (Alexakis–S., 2015)

Assume φ is a regular solution in ${\mathcal D}$ of

$$\Box \Phi + V \Phi = 0, \qquad \|V\|_{L^{\infty}} \le C,$$

where V also decays toward \mathfrak{I}^{\pm} as before.

If ϕ , $\nabla \phi$ vanish to order $A > A_0$ at $\frac{1}{2} \mathcal{I}^{\pm}$, with A_0 depending on C, then $\phi = 0$ everywhere on \mathcal{D} (and hence \mathbb{R}^{1+n}).

Remark. The L^{∞} -assumption on V is necessary.

• Otherwise, there are counterexamples.

The Global Nonlinear Theorem

Question

Can some special wave equations be better behaved?

Theorem (Alexakis-S., 2015)

Suppose φ is a regular solution in ${\mathcal D}$ of

$$\Box \phi + V |\phi|^{p-1} \phi = 0, \qquad p \ge 1,$$

where V satisfies a monotonicity property (depending on p).

If ϕ , $\nabla \phi$ vanishes to order δ at $\frac{1}{2}\mathfrak{I}^{\pm}$ for any $\delta > 0$, then $\phi = 0$ on \mathcal{D} .

Idea. Estimates not for \square , but for

$$\Box_{V,p} \phi := \Box \phi + V \cdot |\phi|^{p-1} \phi.$$

Section 2

Unique Continuation Theory

Unique Continuation

Unique continuation (UC): classical problem in PDEs.

• When we cannot solve a PDE, we can still ask if solutions are unique.

Problem (Unique Continuation)

Suppose:

- ϕ solves $(\Box_g + \nabla_X + V)\phi = 0$.
- ϕ , $\nabla \phi$ vanish on a hypersurface Σ .

Must ϕ vanish on one side of Σ ?

In particular, we are interested in $\Sigma \subseteq \mathcal{I}^{\pm}$.

The Classical Theory

Ancient theory: analytic PDE, noncharacteristic Σ .

- (Cauchy–Kovalevskaya) Existence, uniqueness of analytic solutions.
- (Holmgren, F. John) Solution unique even in nonanalytic classes.

Classical theory for non-analytic equations (Calderón, Hörmander):

- Crucial point: pseudoconvexity of Σ .
- Σ pseudoconvex \Rightarrow Carleman estimates \Rightarrow UC from Σ .
- (Alinhac–Baouendi) Σ not pseudoconvex $\Rightarrow \exists X$, V with counterexamples.

Remark. Classical UC results are purely local.

• UC from a small neighbourhood of $P \in \Sigma$.

A Geometric Perspective

(Lerner–Robbiano) The following are equivalent:

- $\Sigma := \{f = 0\}$ is pseudoconvex (wrt \square_g and f).
- $\nabla^2 f(X, X) < 0$ on Σ , whenever g(X, X) = Xf = 0.
- -f is convex on Σ , in the tangent null (bicharacteristic) directions.

In this case, UC from Σ to f > 0.

Visual interpretation:

- Null geodesic (bicharacteristic) hitting Σ tangentially...
- ... lies in $\{f < 0\}$ nearby.

Note. Pseudoconvexity is conformally invariant.

• Sensible to take $\Sigma \subseteq \mathfrak{I}^{\pm}$.

 Σ pseudoconvex at P.

Zero Pseudoconvexity

Bad news. \mathcal{I}^{\pm} (barely) fails to be pseudoconvex.

"Zero pseudoconvex".

 Σ is zero pseudoconvex $\Leftrightarrow \Sigma$ is ruled by null geodesics.

• Need more refined understanding of geometry near \mathfrak{I}^{\pm} .

Possible loss of local UC in zero pseudoconvex settings:

- (Alinhac–Baouendi) Counterexample to local UC when $\Sigma = \{x_n = 0\} \subset \mathbb{R}^{1+n}$.
- (Kenig–Ruiz–Sogge) Global UC from all of $\Sigma = \{x_n = 0\}$.
- Main result: Semi-global UC (from "large enough" hypersurface $(\frac{1}{2} + \varepsilon)J^{\pm}$).
- Main result: Local UC (locally from $\varepsilon \mathcal{I}^{\pm}$).

Carleman Estimates

Carleman estimates: main technical tool for proving UC.

- Weighted integral estimates, with free parameter $\lambda > 0$.
- (Carleman, Calderón, Hörmander, Tataru, ...)

$$\lambda \int_{\Omega} w_{\lambda}(|\nabla \varphi|^2 + |\varphi|^2)] \lesssim \int_{\Omega} w_{\lambda} |\Box_g \varphi|^2.$$

- Ω: spacetime region.
- w_{λ} : weight function (constructed from pseudoconvexity).

Σ pseudoconvex \Rightarrow (local) Carleman estimate near Σ .

• Q. Zero pseudoconvex ⇒ "degenerate" Carleman estimates?

Section 3

Carleman Estimates: Some Key Ideas

Result Near J±: Pseudoconvexity

Recall. UC result on Minkowski:

• UC from $(\frac{1}{2} + \varepsilon)\mathfrak{I}^{\pm}$.

Consider hyperboloids in \mathbb{R}^{1+n} :

- Blue: level sets of $f = t^2 t^2$.
 - These are only zero pseudoconvex.
- Red: "warped" level sets of f_* .
 - These are (inward) pseudoconvex.
 - Pseudoconvexity degenerates at \mathfrak{I}^{\pm} .

Result Near J±: Infinite-Order Vanishing

Can derive Carleman estimate roughly of the form:

$$\int_{\Omega} f_{\star}^{2\lambda} (w|\nabla \varphi|^2 + \varphi^2) \lesssim \lambda^{-1} \int_{\Omega} f_{\star}^{2\lambda} |\Box \varphi|^2 + \int_{f_{\star} = \infty} f_{\star}^{2\lambda} (|\nabla \varphi|^2 + \varphi^2).$$

Need boundary term at $f_{\star} = +\infty$ to vanish:

• Need 4λ -order vanishing for ϕ , $\nabla \phi$.

Must assume ϕ , $\nabla \phi$ vanish at $f_{\star} = f_0$.

- In practice, done using cutoff function.
- \Rightarrow For UC, need to take $\lambda \nearrow \infty$.
- \rightarrow Need ∞ -order vanishing at \mathcal{I}^{\pm} .

Global Result: Carleman Near J±

Recall. Global UC result on Minkowski:

• Global UC from $\frac{1}{2}J^{\pm}$, with finite-order vanishing.

Carleman estimate in this setting: (roughly)

$$\int_{\Omega} f^{2\lambda} \varphi^2 \lesssim \lambda^{-1} \int_{\Omega} f^{2\lambda} |\Box \varphi|^2 + \int_{f=\infty} f^{2\lambda} (|\nabla \varphi|^2 + \varphi^2).$$

- $f := r^2 t^2$.
- **Remark.** Also need lower-order modification of $f^{2\lambda}$.

Remark. No $|\nabla \phi|^2$ -term on LHS:

- Since level sets of f are zero pseudoconvex.
- Can only handle equations of the form $(\Box + V)\phi = 0$.

4 □ > 4 5

Arick Shao (QMUL)

Unique Continuation

Global Result: Global Carleman

To avoid ∞-order vanishing:

- \Rightarrow Avoid taking $\lambda \nearrow \infty$.
- \Rightarrow Avoid using cutoff function near $f = f_0$.

Idea. Note weight $f^{2\lambda}$ vanishes on f = 0.

- f = 0: null cone about origin (|t| = r).
- If Carleman estimate can be pushed to f = 0, then we do not need a cutoff to kill the $f = f_0$ boundary term.

Can derive global Carleman estimate: (roughly)

$$\int_{\mathcal{D}} f^{2\lambda} \varphi^2 \lesssim \lambda^{-1} \int_{\mathcal{D}} f^{2\lambda} |\Box \varphi|^2 + \int_{f=\infty} f^{2\lambda} (|\nabla \varphi|^2 + \varphi^2).$$

Global Carleman: Finite Domains

Idea. Estimate holds on finite spacetime domains:

• Given $\mathcal{U} \subseteq \mathbb{R}^{1+n}$:

$$\int_{\mathcal{U}\cap\mathcal{D}} f^{2\lambda} \varphi^2 \lesssim \lambda^{-1} \int_{\mathcal{U}\cap\mathcal{D}} f^{2\lambda} |\Box \varphi|^2 + \int_{\mathfrak{\partial}\mathcal{U}\cap\mathcal{D}} (\dots).$$

- Extra boundary term on $\partial \mathcal{U}$.
- Novel feature: No boundary term anywhere on \mathcal{D} .

The finite setting allows for one more trick:

• Another modification of weight $f \Rightarrow$ can reinsert $|\nabla \phi|^2$ in LHS:

$$\int_{\mathcal{U}\cap\mathcal{D}} f_{\dagger}^{2\lambda}(\textbf{w}|\nabla\varphi|^2+\varphi^2) \lesssim \lambda^{-1}\int_{\mathcal{U}\cap\mathcal{D}} f_{\dagger}^{2\lambda}|\Box\varphi|^2+\int_{\vartheta\mathcal{U}\cap\mathcal{D}}(\dots).$$

• Control of ϕ on "shaded bulk region" by ϕ on "black boundary".

Section 4

Applications of Carleman Estimates

Sample of Applications

Geometric UC results have applications to relativity:

• (Alexakis–Schlue) Nonexistence of time-periodic vacuum spacetimes.

Singularity formation for NLW (subconformal focusing):

Finite Carleman estimate ⇒ information about behaviour of singularities.

Control theory (*): Exact controllability of wave equations.

Inverse problems: Determining PDE from measurements of its solutions.

- Lower-order coefficients X, V.
- Metric (principal coefficients) g.

Exact Controllability

Recall. $\Omega \subseteq \mathbb{R}^n$: open, bounded, smooth boundary.

The following initial-boundary value problem has a unique solution:

- Wave equation: $\mathcal{L}\phi = (\Box + \nabla_X + V)\phi = 0$ on $[T_-, T_+] \times \Omega$.
- Initial condition: $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)$.
- Boundary condition: $\phi|_{(T_-,T_+)\times\partial\Omega}=\phi_b$.

Problem (Exact Dirichlet boundary controllability)

Fix $\Gamma \subset (T_-, T_+) \times \partial \Omega$.

- Given any "initial" and "final" data $(\phi_0^{\pm}, \phi_1^{\pm}) \in L^2(\Omega) \times H^{-1}(\Omega)...$
- ... can one find Dirichlet boundary data $\phi_b \in L^2(\Gamma)$, such that...
- ... the solution of the above satisfies $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$?

In other words, can solutions be controlled via Dirichlet boundary data?

Arick Shao (QMUL) Unique Continuation 29 / 36

Basic Principles

Finite speed of propagation \Rightarrow lower-bound on timespan $T_+ - T_-$.

• Information from ϕ_b needs time to travel to all of Ω .

(Dolecki-Russell, Lions) Hilbert uniqueness method (HUM)

Preceding problem can be solved if and only if:

• For any solution ψ satisfying

$$\mathcal{L}^*\psi|_{[\mathcal{T}_-,\mathcal{T}_+]\times\Omega}=0,\quad (\psi,\vartheta_t\psi)|_{t=\mathcal{T}_+}=(\psi_0^+,\psi_1^+),\quad \psi|_{(\mathcal{T}_-,\mathcal{T}_+)\times\vartheta\Omega}=0...$$

...the following observability inequality holds:

$$\|(\psi_0^+,\psi_1^+)\|_{H^1(\Omega)\times L^2(\Omega)}\leq \textit{C}\|\mathfrak{d}_\nu\psi\|_{\textit{L}^2(\Gamma)}.$$

- $\partial_{\nu}\psi$: Neumann data.
- C independent of ψ .

Methods for Observability

Thus, exact controllability is reduced to proving observability.

- **I.** Fourier series methods: handles $(-\partial_t^2 + \partial_x^2 + \alpha)\phi = 0$.
- **II.** Multiplier (energy) methods: handles $\Box \phi = 0$.
 - And some perturbations.
- III. Microlocal methods:
 - Most precise, optimal (w.r.t. control region) results.
 - (Bardos-Lebeau-Rauch) Geometric control condition.
 - However, only applies to time-independent (or time-analytic) equations.

Carleman Estimate Methods

- IV. Carleman estimates: very robust method for observability.
 - Handles time-dependent equations, without assuming analyticity.

Via multiplier/Carleman methods, can show:

- Observability estimate $\|(\psi_0^+,\psi_1^+)\|_{H^1(\Omega)\times L^2(\Omega)} \leq C\|\partial_\nu\psi\|_{L^2(\Gamma)}...$
- ...with $\Gamma := (T_-, T_+) \times \{x \in \partial\Omega \mid (x x_0) \cdot \nu > 0\}.$
- $x_0 \in \mathbb{R}^n$ fixed.
- ν : outer unit normal to Ω .

Geometric interpretation:

• $(t, x) \in \Gamma \Leftrightarrow \text{ray from } x_0 \text{ through } x \text{ is leaving } \Omega \text{ at } x.$

Novel Improvements I

Previous Carleman estimates + energy estimates \Rightarrow observability.

With some novel features.

A. Region Γ of control can be improved.

Γ can be time-dependent:

$$\Gamma = [(T_-, T_+) \times \{x \in \partial\Omega \mid (x - x_0) \cdot \nu > 0\}] \cap \mathcal{D}_{(t_0, x_0)}.$$

• \mathcal{D} : exterior of null cone about (t_0, x_0) .

Theorem (S.)

Exact controllability for general wave equations...

• ...with Dirichlet control on the above Γ , restricted to $\mathcal{D}_{(t_0,x_0)}$.

33 / 36

Arick Shao (QMUL) Unique Continuation

Novel Improvements II

What about time-dependent domains with moving boundaries?

$$\mathcal{U} = \bigcup_{T_- \le \tau \le T_+} (\{\tau\} \times \Omega_{\tau}).$$

- B. Carleman estimate proved using Lorentzian-geometric methods.
 - Directly applicable to more general domains \mathcal{U} .
 - $(x-x_0) \cdot v > 0$ replaced by similar condition, with a "relativistic correction".

Theorem (S.)

Previous theorem extends to time-dependent domains \mathcal{U} :

- Γ similar to before, but with "relativistic correction".
- Achieves optimal timespan when n = 1.

Some Final Context

Previous literature for time-dependent domains is sparse:

- General n: only special cases of \mathcal{U} .
 - *U* expanding (Bardos-Chen).
 - Self-similar and asymptotically cylindrical (Miranda).
- n = 1: recent work by various authors.
 - Optimal results for special cases ($\partial \mathcal{U} = \text{two lines}$).
 - General cases: non-optimal timespan.

Future work. Explore controllability for geometric wave equations.

- Lorentzian-geometric techniques well-adapted to this analysis.
- General Lorentzian settings unexplored.

The End

Thank you for your attention!