Unique Continuation for Waves, Carleman Estimates, and Applications #### Arick Shao Queen Mary University of London Leeds Analysis and Applications Seminar 14 February, 2018 ### Outline - Recent unique continuation (UC) results for wave equations. - UC "from infinity". - 2 Theory of UC. - Why is "classical" theory not enough? - Some ideas behind Carleman estimates. - Main analysis tool for UC. - Other) Applications of Carleman estimates - Focus on control theory. ### Section 1 Unique Continuation from Infinity ## Wave Equations #### Consider the wave equation: $$\Box \phi := (-\partial_t^2 + \Delta_x) \phi = 0, \qquad \phi : \mathbb{R}_t \times \mathbb{R}_x^n \to \mathbb{R}.$$ - Generalisations: linear/nonlinear waves, systems, geometric waves. - Physics: Maxwell equations, Yang-Mills equations, Einstein equations, fluids #### Initial value problem: $$\Box \phi = F(t, x, \phi, D\phi), \qquad \phi|_{t=0} = \phi_0, \quad \partial_t \phi|_{t=0} = \phi_1.$$ - In general, \exists ! solution for "nice" initial data (ϕ_0, ϕ_1) . - Solution "depends continuously on" initial data. ### Radiation ### Regular solutions of $\Box \phi = 0$: - Propagate at fixed, finite speed. - Decay in space and time at known rates. Can make sense of "asymptotics at infinity": • Leading order coefficient: radiation field. #### Question (UC from infinity) Are solutions of wave equations determined by its "data at infinity"? # Minkowski Geometry #### **Theme:** Geometric viewpoint for studying wave equations. - Robust techniques applicable to many curved backgrounds. - Applications to problems in relativity. ### Natural setting: Minkowski spacetime (\mathbb{R}^{1+n} , m). - Minkowski metric: $m := -dt^2 + d(x^1)^2 + \cdots + d(x^n)^2$. - Setting of special relativity. - $\Box = m^{\alpha\beta} \nabla_{\alpha\beta}$: natural second-order PDO in Minkowski geometry. - Analogue of Δ in Euclidean geometry. # Infinity Previous picture, projected. Infinity visualised via Penrose compactification. - Conformal transformation $m \mapsto \Omega^2 m$. - $(\mathbb{R}^{1+n}, \Omega^2 m)$ isometrically embeds into relatively compact region in $\mathbb{R} \times \mathbb{S}^n$. Infinity realised as boundary of shaded region. - Future/past null infinity J[±]: Null geodesics (bicharacteristics of □) terminate here. - Radiation field manifested at J[±]. For this talk, useful for drawing pictures. ## Main Questions ### Question (UC from infinity) Does ϕ on some part of \mathfrak{I}^{\pm} determine ϕ inside? - General linear/nonlinear waves, e.g., $(\Box + \nabla_X + V)\phi = 0$? - Geometric waves on curved backgrounds: $\Box_g \varphi = g^{\alpha\beta} \nabla^2_{\alpha\beta} \varphi = \dots$? #### For linear waves: - If $\phi = 0$ on some part of \mathfrak{I}^{\pm} , then is $\phi = 0$ inside? - Are nonradiating waves trivial? # Scattering Results (Friedlander) Isometry between initial data (at t = 0) and radiation field (at \mathfrak{I}^+). • Applies only to free waves ($\Box \phi = 0$). Red: Solve forward from t = 0. Blue: Solve backward from \mathfrak{I}^+ . #### Various generalisations: Product manifolds R × X, special nonlinear waves, special black hole spacetimes. However, we are more interested in: - Ill-posed settings: cannot solve the wave equation. - Other linear and geometric waves. ## Result Near Infinity #### Theorem (Alexakis-Schlue-S., 2015) Assume ϕ is a solution, near \mathfrak{I}^{\pm} , of $$\Box \Phi + \nabla_X \Phi + V \Phi = 0,$$ where X, V decay sufficiently toward \mathfrak{I}^{\pm} . If ϕ , $\nabla \phi$ vanish to ∞ -order on $(\frac{1}{2} + \epsilon)J^{\pm}$, then $\phi = 0$ in the interior near $(\frac{1}{2} + \epsilon)J^{\pm}$. **Remark.** The ∞ -order vanishing is optimal. - Counterexamples if ϕ vanishes only to finite order. - On \mathbb{R}^{1+n} (n>2), can take $\phi = \nabla_x^k r^{-(n-2)}$. ### Geometric Robustness #### Question Can UC result be extended to curved backgrounds? • Asymptotically flat spacetimes: those with "similar structure of infinity". ### Theorem (Alexakis-Schlue-S., 2015) The main result extends to a large class of (both stationary and dynamic) asymptotically flat spacetimes, including: - Perturbations of Minkowski spacetimes. - 2 Schwarzschild and Kerr spacetimes, and perturbations. For (2), result can be localised near εJ^{\pm} . # Finite-Order Vanishing? #### Question On Minkowski spacetime (\mathbb{R}^{1+n} , m): • Can ∞-order vanishing condition be somehow removed? **Recall.** Counterexamples $\nabla_x^k r^{-(n-2)}$. • Note that these blow up at r = 0. **Idea.** Impose global regularity for ϕ , up to r = 0. ### The Global Result ## Theorem (Alexakis–S., 2015) Assume φ is a regular solution in ${\mathcal D}$ of $$\Box \Phi + V \Phi = 0, \qquad \|V\|_{L^{\infty}} \le C,$$ where V also decays toward \mathfrak{I}^{\pm} as before. If ϕ , $\nabla \phi$ vanish to order $A > A_0$ at $\frac{1}{2} \mathcal{I}^{\pm}$, with A_0 depending on C, then $\phi = 0$ everywhere on \mathcal{D} (and hence \mathbb{R}^{1+n}). **Remark.** The L^{∞} -assumption on V is necessary. • Otherwise, there are counterexamples. ## The Global Nonlinear Theorem #### Question Can some special wave equations be better behaved? #### Theorem (Alexakis-S., 2015) Suppose φ is a regular solution in ${\mathcal D}$ of $$\Box \phi + V |\phi|^{p-1} \phi = 0, \qquad p \ge 1,$$ where V satisfies a monotonicity property (depending on p). If ϕ , $\nabla \phi$ vanishes to order δ at $\frac{1}{2}\mathfrak{I}^{\pm}$ for any $\delta > 0$, then $\phi = 0$ on \mathcal{D} . **Idea.** Estimates not for \square , but for $$\Box_{V,p} \phi := \Box \phi + V \cdot |\phi|^{p-1} \phi.$$ ### Section 2 ## Unique Continuation Theory # **Unique Continuation** Unique continuation (UC): classical problem in PDEs. • When we cannot solve a PDE, we can still ask if solutions are unique. #### Problem (Unique Continuation) #### Suppose: - ϕ solves $(\Box_g + \nabla_X + V)\phi = 0$. - ϕ , $\nabla \phi$ vanish on a hypersurface Σ . Must ϕ vanish on one side of Σ ? In particular, we are interested in $\Sigma \subseteq \mathcal{I}^{\pm}$. ## The Classical Theory #### Ancient theory: analytic PDE, noncharacteristic Σ . - (Cauchy–Kovalevskaya) Existence, uniqueness of analytic solutions. - (Holmgren, F. John) Solution unique even in nonanalytic classes. #### Classical theory for non-analytic equations (Calderón, Hörmander): - Crucial point: pseudoconvexity of Σ . - Σ pseudoconvex \Rightarrow Carleman estimates \Rightarrow UC from Σ . - (Alinhac–Baouendi) Σ not pseudoconvex $\Rightarrow \exists X$, V with counterexamples. #### Remark. Classical UC results are purely local. • UC from a small neighbourhood of $P \in \Sigma$. ## A Geometric Perspective #### (Lerner–Robbiano) The following are equivalent: - $\Sigma := \{f = 0\}$ is pseudoconvex (wrt \square_g and f). - $\nabla^2 f(X, X) < 0$ on Σ , whenever g(X, X) = Xf = 0. - -f is convex on Σ , in the tangent null (bicharacteristic) directions. In this case, UC from Σ to f > 0. #### Visual interpretation: - Null geodesic (bicharacteristic) hitting Σ tangentially... - ... lies in $\{f < 0\}$ nearby. **Note.** Pseudoconvexity is conformally invariant. • Sensible to take $\Sigma \subseteq \mathfrak{I}^{\pm}$. Σ pseudoconvex at P. # Zero Pseudoconvexity **Bad news.** \mathcal{I}^{\pm} (barely) fails to be pseudoconvex. "Zero pseudoconvex". Σ is zero pseudoconvex $\Leftrightarrow \Sigma$ is ruled by null geodesics. • Need more refined understanding of geometry near \mathfrak{I}^{\pm} . Possible loss of local UC in zero pseudoconvex settings: - (Alinhac–Baouendi) Counterexample to local UC when $\Sigma = \{x_n = 0\} \subset \mathbb{R}^{1+n}$. - (Kenig–Ruiz–Sogge) Global UC from all of $\Sigma = \{x_n = 0\}$. - Main result: Semi-global UC (from "large enough" hypersurface $(\frac{1}{2} + \varepsilon)J^{\pm}$). - Main result: Local UC (locally from $\varepsilon \mathcal{I}^{\pm}$). ### Carleman Estimates #### Carleman estimates: main technical tool for proving UC. - Weighted integral estimates, with free parameter $\lambda > 0$. - (Carleman, Calderón, Hörmander, Tataru, ...) $$\lambda \int_{\Omega} w_{\lambda}(|\nabla \varphi|^2 + |\varphi|^2)] \lesssim \int_{\Omega} w_{\lambda} |\Box_g \varphi|^2.$$ - Ω: spacetime region. - w_{λ} : weight function (constructed from pseudoconvexity). ### Σ pseudoconvex \Rightarrow (local) Carleman estimate near Σ . • Q. Zero pseudoconvex ⇒ "degenerate" Carleman estimates? #### Section 3 Carleman Estimates: Some Key Ideas ## Result Near J±: Pseudoconvexity #### Recall. UC result on Minkowski: • UC from $(\frac{1}{2} + \varepsilon)\mathfrak{I}^{\pm}$. ### Consider hyperboloids in \mathbb{R}^{1+n} : - Blue: level sets of $f = t^2 t^2$. - These are only zero pseudoconvex. - Red: "warped" level sets of f_* . - These are (inward) pseudoconvex. - Pseudoconvexity degenerates at \mathfrak{I}^{\pm} . # Result Near J±: Infinite-Order Vanishing Can derive Carleman estimate roughly of the form: $$\int_{\Omega} f_{\star}^{2\lambda} (w|\nabla \varphi|^2 + \varphi^2) \lesssim \lambda^{-1} \int_{\Omega} f_{\star}^{2\lambda} |\Box \varphi|^2 + \int_{f_{\star} = \infty} f_{\star}^{2\lambda} (|\nabla \varphi|^2 + \varphi^2).$$ Need boundary term at $f_{\star} = +\infty$ to vanish: • Need 4λ -order vanishing for ϕ , $\nabla \phi$. Must assume ϕ , $\nabla \phi$ vanish at $f_{\star} = f_0$. - In practice, done using cutoff function. - \Rightarrow For UC, need to take $\lambda \nearrow \infty$. - \rightarrow Need ∞ -order vanishing at \mathcal{I}^{\pm} . ## Global Result: Carleman Near J± #### Recall. Global UC result on Minkowski: • Global UC from $\frac{1}{2}J^{\pm}$, with finite-order vanishing. ### Carleman estimate in this setting: (roughly) $$\int_{\Omega} f^{2\lambda} \varphi^2 \lesssim \lambda^{-1} \int_{\Omega} f^{2\lambda} |\Box \varphi|^2 + \int_{f=\infty} f^{2\lambda} (|\nabla \varphi|^2 + \varphi^2).$$ - $f := r^2 t^2$. - **Remark.** Also need lower-order modification of $f^{2\lambda}$. ### **Remark.** No $|\nabla \phi|^2$ -term on LHS: - Since level sets of f are zero pseudoconvex. - Can only handle equations of the form $(\Box + V)\phi = 0$. 4 □ > 4 5 Arick Shao (QMUL) Unique Continuation ### Global Result: Global Carleman To avoid ∞-order vanishing: - \Rightarrow Avoid taking $\lambda \nearrow \infty$. - \Rightarrow Avoid using cutoff function near $f = f_0$. **Idea.** Note weight $f^{2\lambda}$ vanishes on f = 0. - f = 0: null cone about origin (|t| = r). - If Carleman estimate can be pushed to f = 0, then we do not need a cutoff to kill the $f = f_0$ boundary term. Can derive global Carleman estimate: (roughly) $$\int_{\mathcal{D}} f^{2\lambda} \varphi^2 \lesssim \lambda^{-1} \int_{\mathcal{D}} f^{2\lambda} |\Box \varphi|^2 + \int_{f=\infty} f^{2\lambda} (|\nabla \varphi|^2 + \varphi^2).$$ ## Global Carleman: Finite Domains #### **Idea.** Estimate holds on finite spacetime domains: • Given $\mathcal{U} \subseteq \mathbb{R}^{1+n}$: $$\int_{\mathcal{U}\cap\mathcal{D}} f^{2\lambda} \varphi^2 \lesssim \lambda^{-1} \int_{\mathcal{U}\cap\mathcal{D}} f^{2\lambda} |\Box \varphi|^2 + \int_{\mathfrak{\partial}\mathcal{U}\cap\mathcal{D}} (\dots).$$ - Extra boundary term on $\partial \mathcal{U}$. - Novel feature: No boundary term anywhere on \mathcal{D} . #### The finite setting allows for one more trick: • Another modification of weight $f \Rightarrow$ can reinsert $|\nabla \phi|^2$ in LHS: $$\int_{\mathcal{U}\cap\mathcal{D}} f_{\dagger}^{2\lambda}(\textbf{w}|\nabla\varphi|^2+\varphi^2) \lesssim \lambda^{-1}\int_{\mathcal{U}\cap\mathcal{D}} f_{\dagger}^{2\lambda}|\Box\varphi|^2+\int_{\vartheta\mathcal{U}\cap\mathcal{D}}(\dots).$$ • Control of ϕ on "shaded bulk region" by ϕ on "black boundary". #### Section 4 ## Applications of Carleman Estimates ## Sample of Applications #### Geometric UC results have applications to relativity: • (Alexakis–Schlue) Nonexistence of time-periodic vacuum spacetimes. #### Singularity formation for NLW (subconformal focusing): Finite Carleman estimate ⇒ information about behaviour of singularities. Control theory (*): Exact controllability of wave equations. #### Inverse problems: Determining PDE from measurements of its solutions. - Lower-order coefficients X, V. - Metric (principal coefficients) g. # Exact Controllability **Recall.** $\Omega \subseteq \mathbb{R}^n$: open, bounded, smooth boundary. The following initial-boundary value problem has a unique solution: - Wave equation: $\mathcal{L}\phi = (\Box + \nabla_X + V)\phi = 0$ on $[T_-, T_+] \times \Omega$. - Initial condition: $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)$. - Boundary condition: $\phi|_{(T_-,T_+)\times\partial\Omega}=\phi_b$. #### Problem (Exact Dirichlet boundary controllability) Fix $\Gamma \subset (T_-, T_+) \times \partial \Omega$. - Given any "initial" and "final" data $(\phi_0^{\pm}, \phi_1^{\pm}) \in L^2(\Omega) \times H^{-1}(\Omega)...$ - ... can one find Dirichlet boundary data $\phi_b \in L^2(\Gamma)$, such that... - ... the solution of the above satisfies $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$? In other words, can solutions be controlled via Dirichlet boundary data? Arick Shao (QMUL) Unique Continuation 29 / 36 ## Basic Principles Finite speed of propagation \Rightarrow lower-bound on timespan $T_+ - T_-$. • Information from ϕ_b needs time to travel to all of Ω . (Dolecki-Russell, Lions) Hilbert uniqueness method (HUM) Preceding problem can be solved if and only if: • For any solution ψ satisfying $$\mathcal{L}^*\psi|_{[\mathcal{T}_-,\mathcal{T}_+]\times\Omega}=0,\quad (\psi,\vartheta_t\psi)|_{t=\mathcal{T}_+}=(\psi_0^+,\psi_1^+),\quad \psi|_{(\mathcal{T}_-,\mathcal{T}_+)\times\vartheta\Omega}=0...$$...the following observability inequality holds: $$\|(\psi_0^+,\psi_1^+)\|_{H^1(\Omega)\times L^2(\Omega)}\leq \textit{C}\|\mathfrak{d}_\nu\psi\|_{\textit{L}^2(\Gamma)}.$$ - $\partial_{\nu}\psi$: Neumann data. - C independent of ψ . # Methods for Observability Thus, exact controllability is reduced to proving observability. - **I.** Fourier series methods: handles $(-\partial_t^2 + \partial_x^2 + \alpha)\phi = 0$. - **II.** Multiplier (energy) methods: handles $\Box \phi = 0$. - And some perturbations. - III. Microlocal methods: - Most precise, optimal (w.r.t. control region) results. - (Bardos-Lebeau-Rauch) Geometric control condition. - However, only applies to time-independent (or time-analytic) equations. ## Carleman Estimate Methods - IV. Carleman estimates: very robust method for observability. - Handles time-dependent equations, without assuming analyticity. #### Via multiplier/Carleman methods, can show: - Observability estimate $\|(\psi_0^+,\psi_1^+)\|_{H^1(\Omega)\times L^2(\Omega)} \leq C\|\partial_\nu\psi\|_{L^2(\Gamma)}...$ - ...with $\Gamma := (T_-, T_+) \times \{x \in \partial\Omega \mid (x x_0) \cdot \nu > 0\}.$ - $x_0 \in \mathbb{R}^n$ fixed. - ν : outer unit normal to Ω . #### Geometric interpretation: • $(t, x) \in \Gamma \Leftrightarrow \text{ray from } x_0 \text{ through } x \text{ is leaving } \Omega \text{ at } x.$ ## Novel Improvements I Previous Carleman estimates + energy estimates \Rightarrow observability. With some novel features. #### **A.** Region Γ of control can be improved. Γ can be time-dependent: $$\Gamma = [(T_-, T_+) \times \{x \in \partial\Omega \mid (x - x_0) \cdot \nu > 0\}] \cap \mathcal{D}_{(t_0, x_0)}.$$ • \mathcal{D} : exterior of null cone about (t_0, x_0) . #### Theorem (S.) Exact controllability for general wave equations... • ...with Dirichlet control on the above Γ , restricted to $\mathcal{D}_{(t_0,x_0)}$. 33 / 36 Arick Shao (QMUL) Unique Continuation ## Novel Improvements II What about time-dependent domains with moving boundaries? $$\mathcal{U} = \bigcup_{T_- \le \tau \le T_+} (\{\tau\} \times \Omega_{\tau}).$$ - B. Carleman estimate proved using Lorentzian-geometric methods. - Directly applicable to more general domains \mathcal{U} . - $(x-x_0) \cdot v > 0$ replaced by similar condition, with a "relativistic correction". ### Theorem (S.) Previous theorem extends to time-dependent domains \mathcal{U} : - Γ similar to before, but with "relativistic correction". - Achieves optimal timespan when n = 1. ### Some Final Context #### Previous literature for time-dependent domains is sparse: - General n: only special cases of \mathcal{U} . - *U* expanding (Bardos-Chen). - Self-similar and asymptotically cylindrical (Miranda). - n = 1: recent work by various authors. - Optimal results for special cases ($\partial \mathcal{U} = \text{two lines}$). - General cases: non-optimal timespan. #### **Future work.** Explore controllability for geometric wave equations. - Lorentzian-geometric techniques well-adapted to this analysis. - General Lorentzian settings unexplored. ### The End Thank you for your attention!