EXTENDING CALCULUS: DERIVATIVES

ARICK SHAO

1. DIRECTIONAL DERIVATIVES IN R"™

One learns early in first-year calculus the definition of the derivative, and its
basic interpretation. To review, consider a function

f:(a,b) =R,

and consider the limit

o @t = f@) L fwth) — f()

h—0 h h—0 (z+h)—z a<w<bh

Fixing a displacement value h, consider the line through the two points (z, f(x))
and (z + h, f(z + h)) on the graph of f. From high school algebra, we know that
the slope of the line is given precisely by the quotient

flx+h) - f(z)
(x+h)—x

Thus, in the above limit, we are computing the slope of the line through (z, f(z))
and (z + h, f(z + h)), and we are exploring what happens to this slope when the
latter point slides progressively closer to the former along the graph of f.

If the limit of the above quotient exists, then we say that f is differentiable at
x. In this case, the derivative of f at x is defined to be that limit:

/ - fle+h) - fz)
R
If f is sufficiently regular to be differentiable at x, then the family of lines described
above tends in the limit A — 0 to a line through (z, f(x)), with slope f'(z).

Visually, this aforementioned line can be interpreted as the one tangent to the
graph of f at (z, f(x)). One can also think of this line as the best linear approx-
imation of the graph of f near (z, f(z)). In physics, one often interprets f'(z) to
be the instantaneous rate of change of f at x.

A large variety of applications exist for derivatives. Here, we focus on the main
application discussed in elementary calculus courses: finding the extrema of a func-
tion. Suppose f, as given above, has a local mazimum at z € (a,b). More specifi-
cally, suppose there is some subinterval

I=(x—¢ex+e)

of (a,b), containing z, such that f(y) < f(z) for all points y € I. In this case, can
we say anything about the derivative f’(x), if it exists?
To answer this question, we consider the following cases:
1
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o If f/(x) = ¢ > 0, then near the point (z, f(x)), the graph of f behaves like
the line with positive slope c. Consequently, f, behaving locally like this
line, must be strictly increasing at x. This implies that f(z +h) > f(z) for
some small A > 0, so f cannot have a local maximum at x.

e Similarly, if f'(z) = ¢ < 0, then near (x, f(x)), the graph of f behaves like
the line with negative slope ¢. This implies f(z — h) > f(x) for some small
h > 0, so again, f cannot have a local maximum at x.

As a result, we can conclude that if f has a local mazimum at x, then either f'(x)
vanishes, or f fails to be differentiable at x. By a completely analogous reasoning,
the same conclusion also holds if f has a local minimum at x.

Therefore, we define the critical points of f to be the points x € (a,b) for which
f/(x) either vanishes or fails to exist. This is directly related to this problem of
finding the minima and maxima (i.e., the extrema) of f. Indeed, in order to find
these extrema, one needs only consider the critical points of f.

More specifically, in order to find the extrema of f:

(1) Find the critical points of f: solve the equation f’(x) = 0, and determine
for which points f’ fails to exist.
(2) For each such critical point, check (e.g., directly, or using a second derivative
test) whether f has a local extremum there.
(3) To find the absolute extrema of f, compare the values of f at all its critical
points, as well as at the boundaries a and b.
This is a very general and systematic method, which can be extended to higher
dimensions. This includes functions on R™, which one encounters within vector
calculus, as well as functions on infinite dimensional spaces.

1.1. Directional Derivatives. Recall that for the single-variable function, its de-
rivative represents the rate of change of that function. However, for functions of
multiple variables, the notion of “rate of change” does not quite make sense.
Consider a function f : R? — R of two variables, and fix a point (zg,y0) € R2.
Starting from (xg, o), the value of f can change in dramatically different ways if
one goes in different directions from (x¢, o). For example, if f(z,y) = 22 —2, then
f behaves like an upward-opening parabola in the horizontal direction and like a
downward-opening parabola in the vertical direction. More generally, if we consider
the function f(x,y) = g(x)h(y), then f behaves like g in horizontal directions
and like h in vertical directions. Thus, it is not particularly meaningful to define
something to be “the rate of change of f”. As a result, in order to properly define
some notion derivative of f, we will have to further refine our intuitions.
Consider now a line ¢ through (xg,yo). Recall £ is described completely by:
e The point (20, yo), which is on £.
e The direction of ¢, which is given by a vector (v, v,) € R?.

Given these two parameters, one can now describe ¢ parametrically by
0(t) = (z0,Y0) + t(va, vy).

In particular, £(0) = (xo,yo), and by varying ¢ € R, one can trace out all of £.
Let us now restrict our map f to £. This reduces f to a single-variable function,

ff:R%Rv ff(t) :f<£(t>)a
for which the notions of “rate of change” and derivative make sense. Indeed, the
derivative f;(0), if it exists, gives the rate of change of f at £(0) = (zo,%o) in the
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direction of £. More accurately, f;(0) describes the rate of change of f at (zo,yo)
as one moves (only) in the direction (vg,vy).
By the definition of single-variable derivatives, we see that

f{t(h) = f(£(0))

/ BT
oy f((zo,90) + h(ve,vy)) — f(2o,Y0)
= lim
h—0 h
— lim f(xo + hvg, yo + hvy) — f(x07y0).
h—0 h

This motivates our following definition: we define the directional, or Gateauz, *

derivative of f in the direction (v, v,) at the point (zo,yo) to be the quantity
_ f((z0, y0) + h(va; vy)) — (2o, y0)
df|(mmy0)(vw,vy) = lim ) ( h Y .

h—0

Again, this represents the rate of change of f, in the direction (vy,vy).
In particular, we define the partial derivatives of f to be the directional deriva-
tives in the standard directions (1,0) and (0,1):

9u f(20,90) = df [(20,40)(1,0), Oy f(20,Y0) = df |(29,)(0, 1).
Exercise 1. Compute 0, f(z,y), O, f(x,y), and df| (4, (vz,vy) for
fley) =x+y,  floy) =y, flz,y) =" cosy.
Exercise 2. Let a be a real number, and consider the function
fla,y) = {W (z,y) # (0,0),
a (xz,y) = (0,0).
For what value of a does the partial derivative 0, f(0,0) exist?

Now, there is absolutely nothing stopping us from extending the above directly
to higher-dimensional spaces. Suppose f : R” — R is a function of n variables, and
fix a point rg € R™. If the vector v € R" represents a direction in R™, then the line
£ through rq in the direction v can be parametrized as

L(t) =rg+tv.
Therefore, we can define the directional derivative of f in the direction v at rg by
. f(ro+hv)— f(ro
df ¢ (v) = lim ( ) ( )
h—0 h

Like in the 2-dimensional case, we can rewrite this as a single-variable derivative,

d
df|ry (V) = f1(0) = —[f(ro + tv
Flo() = £10) = 110+ ]

Again, the partial derivatives are just special directional derivatives:
01f(ro) = df|(x)(1,0,...,0), D2 f(ro) = df |(x4)(0,1,0,...,0), etc.
Exercise 3. Compute Ok f(r) and df|.(v) for the function
f:R*"\{(0,...,0)} = R, f(r) =r|.

IThe name “Gateaux derivative” is generally reserved for analogous constructions in infinite-
dimensional spaces. In vector calculus, the term “directional derivative” is almost always used.
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1.2. Finding Extrema. For single-variable functions, one could greatly simplify
the task of finding local or global extrema of that function by considering only its
critical points, i.e., points for which the derivative of the function either vanishes
or fails to exist. Now, we see how one can extend this to functions of n variables.

Let D be some sufficiently nice region in R™, and consider a function f: D — R
of n variables. Suppose that f has a local maximum, say, at some point ry in the
interior of D. In other words, near rg, the values of f are at most that of f(rg).
One can rephrase this more rigorously using distances and epsilons:

There is some € > 0 such that if v € D and |r —ro| < ¢, then f(r) < f(rg).
Again, this is the direct analogue of the definition for single variable functions.
Local minima of f are defined in a completely analogous manner.
Let us now relate these notions to directional derivatives. Fix v € R", and
consider the line ¢, v through ry in the direction v, given parametrically by
leg () =10+ tV.

As rg is a local maximum of f, then rg is also a local maximum of the restriction
of f to fy,~. Consequently, the single variable function

e g(t) = flrov(t))

must have a local maximum at ¢t = 0. From the single variable theory, we have

g'(t) = df|x,(v) = 0.
Here, the first equality follows from the definition of directional derivatives.
Note that we did not assume anything special about the direction v. In fact, the
above holds for any direction v from ry. Therefore, we have proved the following:

Proposition 1.1. If f has a local extremum (maximum or minimum) at ro € R™,
then for any direction v € R™ for which df |y, (v) ezists, we have

df|l‘0 (V) =0.
As a consequence of Proposition 1.1, in order to find the local extrema of f, we
need only look at the critical points of f, that is, the points r where either
e All directional derivatives of f at r vanish, or

e Some directional derivative of f at r fails to exist.

Remark. If f is sufficiently reqular, then all directional derivatives of f are deter-
mined by merely the partial derivatives of f. More specifically, if

v = (v1,V2,...,0),
and if f is “differentiable”, % then

df leo (V) = 0101 f(r0) + v202f (ro) + - - - 4+ v, 0 f(r0).

In particular, in order to find a critical point ro of f, then one needs only show that
all the partial derivatives of f at ro vanishes.

Remark. Like for the single variable case, this first derivative test only applies to
points in the interior of the domain D of f. For points on the boundary of D, one
must resort to other methods, e.q., direct inspection or Lagrange multipliers.

2We do not provide the definition of “differentiability” of multivariable functions here, as it
would require a somewhat lengthy explanation. However, this “differentiability” is a stronger
condition than simply the existence of certain directional derivatives.
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Exercise 4. Let D be the interior of the unit disk in R? about the origin, i.e.,
D={(z.y)|2* +y* <1}.
(1) Find the critical points of the functions
1 1
fly) =2 +y*, gy =(@-5)" - W+3)
in the interior of D.
(2) For each critical point of f, determine directly whether it is a local mazimum
of f, a local maximum of f, or neither.
(3) For each critical point of g, determine directly whether it is a local maximum
of g, a local maximum of g, or neither.

2. AN INFINITE-DIMENSIONAL MODEL PROBLEM

The next task is to extend this notion of directional derivatives we have developed
on the finite-dimensional spaces R™ to infinite-dimensional spaces. In order to keep
the amount of technical details down, we restrict our attention to a single “model
problem”, which we will proceed to solve using these directional derivatives. Here,
we will demonstrate that the shortest curve between two points A, B € R™ must be
the line segment between A and B. Although this is a rather particular problem,
with an intuitively obvious answer, it does serve to demonstrate the role played by
these generalized derivatives in infinite-dimensional settings.

2.1. The Arc Length Functional. Fix distinct points A, B € R™. Let
a:a,b] - R”
denote a sufficiently smooth parametrized curve from A to B, i.e.,
ala) = A, a(b) = B.

Then, the total arc length of the curve « is given by

b
L(a) = / o/ (£)]dt.

This formula can be justified as follows. Suppose «(t) represents the position
of a particle at time ¢, so that the curve defined by « represents the trajectory of
this particle. Then, the derivative o/(t) represents the velocity of the particle at
time ¢, and its magnitude |a/(¢)| is the speed of this particle. Therefore, the above
formula for arc length simply states that if you integrate (i.e., “sum”) the speed of
this particle over time, then you obtain the total distance traveled by the particle.

Now, there is an extra degree of freedom in our setting that we have not exploited
yet: the fact that a single curve can be parametrized in (infinitely) many different
ways. For example, the curve represented by « can also be parametrized as

ay : [0,b—a] = R™, a1 (t) = a(t+a),
ag : [0,1] — R™, as(t) = a1[(b— a)t].
Consequently, given a fixed curve C' in R"™, we have the freedom to choose a conve-
nient parametrization « of C' which is best adapted to the situation at hand.

The specific parametrization we wish to consider is the arc length parametriza-
tion. If C is a curve from A to B, then this is the parametrization

8:[0,T] — R"
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which satisfies the conditions
5(0):*’4’ B(T):B7 |B/(t)| =1

As the name suggests, this parametrization is related to the arc length. For any
0 <t < T, the length of the segment of the curve between 5(0) and 3(t) is

t t
18/(s)|ds :/ ds = 1.
0 0

In particular, the length of C is just

ATW@ww=T

The first question to ask is whether such an arc length parametrization actually
exists. Suppose a : [0,0] — R™ is an arbitrary parametrization of C. We wish to
reparametrize « into our desired arc length parametrization, that is, we wish to
find some monotone increasing function o : [0,7] — [0, b] such that B(t) = a(o(t))
is the arc length parametrization. Since we require that

1= 15/0)] = | Galo®)| = @)l 0

for all ¢, where in the last step, we applied the chain rule, this implies that in order
to obtain the arc length parametrization 8, we must solve the differential equation
1
/

o'(t) = ———
/(e (t))]’
This can always be done using iteration-type methods that we have discussed, as

long as « itself is a “reasonable” parametrization, in that o’ does not vanish. 3

o(0) = 0.

2.2. Critical Points. Now that we have defined the arc length functional £ and
constructed general arc length parametrizations, we can now turn our attention to
the main problem. * Again, we wish to find the shortest curve from A to B. In
other words, we want to minimize the functional L, given the constraint that the
curves we consider all must travel from A to B.

The first step is to connect this to the finite-dimensional problem discussed in
the preceding section. Suppose a curve « : [0,b] — R™ is such a minimizer of L.
If we were to deform « just a little bit, but still as curve from A to B, then this
deformed curve & from A to B cannot be shorter than «, i.e.,

L(a) > L(a).

In this sense, we can think of @ as a minimum of £ (with the constraint that a goes
from A to B). We would like to show that o can only be a minimum of £ if « is a
“critical point” of L, i.e., that all “directional derivatives” of £ vanish at a.

Let us be now a bit more specific, and consider a linear deformation of «. If
v :[0,b] — R™ is another curve, then a + &7 represents a deformation of « for any
€ € R. In order for o + €7 to also be a curve from A to B, though, we require that
this deformation satisfies 4(0) = v(b) = 0, i.e., that v has vanishing endpoints.

Since « is assumed to be a minimizer of £, then

Lla+e) > £(a).

3Note that T here must be the length of a.
4The term “functional” refers to functions whose arguments are functions rather than numbers.
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In other words, if we define the function
g:R—=R, g(e) = L(a+ev),
then g must have a minimum at 0. As a result,
g'(0) = d%ﬁ(a +e7) » =0.
Moreover, if we think of the function a as a “point” in our “infinite-dimensional
space of curves”, then one can think of the map
le) =a+ey
as parametrizing a line in this infinite-dimensional space. Then, the function g
given above is precisely the restriction of £ to this line ¢! Therefore, this quantity
= L L(e(e))

represents the directional derivative of L in the direction ~y.
From this perspective, we see that if « is a minimizer of £, then the directional
derivative of L in the direction 7, i.e., the quantity

§(0) = LLla+e)

e=0 e=0

)

d
dL|a(y) = £/3(a +7)

e=0
must vanish. Furthermore, the above is true for any “direction curve” ~ with
vanishing endpoints. In this sense, we can think of «a as a critical point of L.
Finally, from this argument, we have shown that in order to find potential min-
imizers of L, for curves from A to B, then we need only look at corresponding
critical points of L, i.e., curves a such that the directional derivative d£|,(7y) van-
ishes for all directions v with vanishing endpoints. This greatly reduces the number
of curves which could possibly be a minimizer. Note this is the direct analogue of
the finite-dimensional case - that local minima can only occur at critical points.

2.3. Finding Critical Points. It remains to solve for the critical points of £. In
other words, we wish to find a curve from A to B, parametrized by «, such that

d
dLla(y) = - Llat+ey) =0
€ e=0
for all curves « : [0,b] — R™ with vanishing endpoints. Since we have the freedom
to parametrize a as we see fit, we will take the arc length parametrization described
earlier. More specifically, we assume that

b="T, /()] = 1.
Given a direction curve « as described above, then

T
:/fmm+www

d
iﬁ(a +ev) R

e=0 0 e=0

Ta

= [ VIO O] @) + ey Ol
0

| [ R0 0] 0 + <7 0)
2 Jo (D) + =7 (1)

e=0

’8_0
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_ / T/ + '] -+'(2)
o l(®)+ev ()

TO/
- [ ey 0

In the above, we applied both the power rule and the chain rule. In particular,

“.” represents the dot product of n-dimensional vectors. Recalling the arc length
parametrization condition |o/(t)| = 1, then we wish to solve

e=0

0= d%ﬁ(a—i—sv) :/0 o (t) -~/ (t)dt.

Since v has vanishing endpoints, then we can integrate by parts:

e=0

T
0:/0 o (t) -4/ (t)dt

T
wuvwav—wm»vav—A o (1) -~ (1)t

T
:7/ o (t) - v(t)dt.
0

Note that the above must hold for any v with vanishing endpoints. Since we have
such a vast variety of choices for 7, then the above equation can hold only when
o’ (t) = 0. Indeed, if o (t) fails to vanish everywhere, then one can easily construct
such a direction curve v such that the integral of o - v fails to vanish.

We have now shown that the critical points of £ are the curves a (from A to B)
such that o/ vanishes identically. ® There are only a limited number of candidates
for such curves, since by integrating, we see that

o/ (t) = vo, vo € R",
a(t) = ro + tvo, ro € R™.
Since a(0) = A and a(T) = B, then ry and vg are uniquely determined:
B-A
rg = A, Vo = T .

To summarize, the above reasoning implies that the only critical point of L is
the curve C with the (arc length) parametrization

B-A
T

Note, however, that this curve C' is precisely the line segment from A to B!

It is rather intuitively clear that for any two points A and B, there must be a
shortest curve from A to B. ¢ Since this shortest curve must be a critical point of
L, as described above, then it must in fact be the line segment from A to B. This
completes the solution of our model problem.

a:[0,7] — R, alt)=A+t-

5Again7 we are also adding a “free” constraint of requiring arc length parametrization.
6We will not give a technical proof of this here. This is in fact a part of the Hopf-Rinow
theorem, a well-known result in differential geometry.
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2.4. Additional Remarks. In our model problem, we minimized the arc length
functional £ on the flat space R™. This same process can be extended to curved
spaces as well, such as spheres, hyperboloids, and so on. We can similarly define the
arc length functional on these curved spaces. Thus, we can pose the same question:
what are the minimizing curves of this arc length functional?

The answer is once again tied to finding the corresponding critical points of L.
By performing a similar calculation as before, one can see that critical points are
the curves (or rather, the arc length parametrization « of the curve) which satisfy
a differential equation. ” The solution curves of this differential equation, i.e., the
critical points of L, are called geodesics. Thus, any minimizing curve from two
points A and B along a curved space must be such a geodesic. In particular, in R™,
the geodesic curves are precisely the straight lines.

In contrast to the flat case R™, in curved spaces, a geodesic need not necessarily
be a minimizer of £. For example, if our curved space is the unit sphere

§*={(w,y,2) [ 2" +¢* + 2" =1},
then the geodesics of S? are precisely the great circles, i.e., the circles in S? of
unit radius. Thus, for any two points A, B € S?, any segment along a great circle
connecting A and B is a geodesic segment. If A and B are nonantipodal points,
then A and B can be connected by two arcs of differing lengths which together
form a great circle. Then, at least one of these arcs will not minimize length.

In differential geometry, a major question (which has been answered) is to deter-
mine when a geodesic between two points in a curved space actually minimizes the
length. The answers, in fact, depend fundamentally on how the space is curved.
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