
THE NEED FOR REAL NUMBERS
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1. Some Things Are Just Not Rational

It was known even in ancient times that the rational numbers, i.e., those numbers
that can be expressed as fractions of integers, could not suffice to describe all
numerical quantities of interest. For example, the ancient Greeks had determined
that square roots can be irrational, that is, not a rational number. Other well-known
numbers can also be shown to be irrational, with standard examples including π
and e. Here, we demonstrate some relatively simple proofs of these facts.

1.1.
√

2 is Irrational. Consider a right isosceles triangle, such that the sides bor-
dering the right angle have length 1. By the Pythagorean theorem, then the re-
maining side - the hypotenuse - has length h, with

h2 = 12 + 12 = 2.

In other words, h itself is the square root of 2. Thus, this quantity
√

2 arises
naturally from constructing geometric quantities with unit lengths. Below, we give
a simple proof by contradiction that

√
2 is indeed irrational. 1

Suppose (for an eventual contradiction) that
√

2 is rational, of the form
√

2 =
a

b
,

where a, b are positive integers and have no common factors. Squaring this yields

2 =
a2

b2
, a2 = 2b2.

From this, we see that a2 must be even. This implies that a itself is even (since if
a is odd, then so is a2).

Since a is even, then a = 2y for some integer y. Returning to our rationality
assumption for

√
2 and doing a bit of algebra, then

2 =
a2

b2
=

4y2

b2
, b2 =

4y2

2
= 2y2.

This now implies that b2 is even, so that b is also even.
We have now shown that a and b are both even. But, we had assumed that a

and b had no common factors! Thus, from our assumption that
√

2 is rational, we
have arrived at a contradiction. This shows that

√
2 is not rational.

Exercise 1. Can you tweak the above proof to also show that:

(1)
√
p is irrational for any prime number p?

(2)
√
n is irrational for any natural number n that is not a perfect square?

(3) What about the k-th root of any natural number n?

1However, this is by no means the only proof of this fact.
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1.2. π is Irrational. Next, using basic calculus, we give a proof (out of many
available) of the fact that π, the ratio between the circumference and the diameter
of a circle, is irrational. This argument uses the following ingredients:

• Elementary single-variable calculus: derivatives, integrals, etc.
• The (precalculus) fact that π is the first positive zero of θ 7→ sin θ.

Suppose (again for a contradiction) that π is rational, with

π =
a

b
,

where a and b are once again positive integers without common factors. For any
natural number n, we construct the following function on the interval [0, π]:

fn : [0, π]→ R, fn(x) =
bnxn(π − x)n

n!
=
xn(a− bx)n

n!
.

In order to obtain our contradiction, we consider the integrals

In =

∫ π

0

fn(x) sinxdx, n ∈ N.

First, since the integrand is strictly positive on (0,∞), then every In is strictly
positive. The other preliminary observation is that the fn’s become very small as
n becomes large. This is described quantitatively through the following claim:

Claim 1. The maximum of fn(x) occurs at x = π/2, and

fn(π/2) =
bnπ2n

22nn!
.

Moreover, these maxima converge to 0 as n↗∞, that is

lim
n↗∞

fn(π/2) = 0.

Since each fn is strictly positive on (0, π), the claim implies that the fn’s become
smaller and smaller and decrease to zero as n↗∞. Since the fn’s become uniformly
arbitrarily small as n becomes large, it follows that the In’s must become arbitrarily
small as well. Thus, for sufficiently large n, we must have 0 < In < 1.

With the above observations in hand, we can now derive a contradiction:

Claim 2. In is an integer for any n.

This claim is a consequence of our (erroneous) assumption that π is rational.
Indeed, this claim contradicts our previous observation that 0 < In < 1! The above
outlines the entire proof process. In order to complete this proof and to show that
π is irrational, we need only prove the above two claims.

Proof of Claim 1. Using the product rule, we can compute

f ′n(x) =
bn

(n− 1)!
[xn−1(π − x)n − xn(π − x)n−1].

Therefore, f ′n(x) vanishes whenever

xn−1(π − x)n = xn(π − x)n−1,

that is, whenever one of the following holds:

x = 0 (if n > 1), x = π (if n > 1), x = π − x.
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The last case is equivalent to x being equal to π/2. Since

fn(0) = fn(π) = 0, fn(π/2) =
bnπ2n

22nn!
,

then the maximum of fn must occur at x = π/2, with the desired maximum value.
Finally, to see that

lim
n↗∞

bnπ2n

22nn!
= 0,

one needs only note that n! grows strictly faster than (bπ2/22)n. �

Proof of Claim 2. First, we compute the endpoints of all derivatives of fn.

Claim 3. The quantities f
(m)
n (0) and f

(m)
n (π) are:

• 0, if m < n and m > 2n.
• Some integer, if n ≤ m ≤ 2n.

Furthermore, f
(2n)
n is an integer constant function.

One can prove Claim 3 directly using a bit of brute force. We defer this until
after the remainder of the proof of Claim 2 is completed.

Now that we know the endpoints f
(m)
n (0) and f

(m)
n (π), the computation for In

proceeds via repeated integrations by parts. First of all, we have∫ π

0

f (m)
n (x) sinxdx = −

∫ π

0

f (m)
n (x)

d

dx
cosxdx

= f (m)
n (π) cosπ − f (m)

n (0) cos 0 +

∫ π

0

f (m+1)
n (x) cosxdx

= (integer) +

∫ π

0

f (m+1)
n (x) cosxdx,

where we have applied Claim 3. By a similar computation, we also have∫ π

0

f (m)
n (x) cosxdx =

∫ π

0

f (m)
n (x)

d

dx
sinxdx = −

∫ π

0

f (m+1)
n (x) sinxdx.

Consequently, we can iterate as follows:

In = (integer) +

∫ π

0

f ′n(x) cosxdx

= (integer) −
∫ π

0

f ′′n (x) sinxdx

= . . .

= (integer) + (−1)n
∫ π

0

f (2n)n (x) sinxdx,

Since f
(2n)
n is an integer constant (by Claim 3), then the last integral on the right-

hand side must be an integer (since both sin and cos can be integrated directly).
This proves that In is indeed an integer. �

Proof of Claim 3. If m < n, then using the product and power rules, we see that

f
(m)
n (x) is a sum of terms of the form

Cbn

min(p, q)!
xp(π − x)q,
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where C is an integer constant, and where p and q are positive integers such that
p+ q +m = 2n. Since the above expression vanishes at x = 0 and x = π, then

f (m)
n (0) = f (m)

n (π) = 0.

Similarly, if n ≤ m ≤ 2n, then f
(m)
n (x) is still a sum of terms of the form

g(x) =
Cbn

min(p, q)!
xp(π − x)q,

where C is an integer constant and p+ q +m = 2n, except that now p or q can be
zero. Again, it suffices to show that the above expression g(x) is an integer when
x = 0 or x = π. Suppose first that x = 0.

• If p > 0, then g(x) vanishes.
• If p = 0, then g(x) = Cbnπq = Canbn−q, which is an integer.

Similarly, in the case x = π:

• If q > 0, then g(x) vanishes.
• If q = 0, then g(x) = Cbnπp = Canbn−p, which is an integer.

It now follows that f
(m)
n (0) and f

(m)
n (π) are integers, when n ≤ m ≤ 2n.

Finally, by the power rule, taking 2n derivatives of fn exhausts all the powers of

both x and (π − x), so that f
(2n)
n must be an integer constant function. �

2. Filling In the Holes

In the preceding section, we demonstrated the necessity of going beyond the
rational numbers by showing the existence of quantities (e.g., the hypotenuse of a
right isosceles triangle and the circumference of a circle) which cannot be expressed
merely as a fraction of integers. Now, we continue this discussion by describing
some analytic reasons why one must consider not only the rationals. In fact, this
extension from the rational numbers to the “real numbers” is fundamental to math-
ematical analysis, in particular to developing calculus.

Here, we examine two basic properties of real numbers – the “least upper bound
property” and “completeness” – and we briefly explore how one can rigorously
construct the real number line so that these properties are satisfied. The principal
idea behind both properties is that the set of rational numbers contains “holes”, or
deficiencies, and that by extending to the real numbers, one “fills in these holes”.

Note that these “holes” within the rationals must be infinitesimally small, since
for any p, q ∈ Q with p < q, then there is some r ∈ Q such that p < r < q (given any
two distinct rational numbers, there exists a third rational number that is between
those two). On the other hand, the set of irrational numbers must be strictly larger
than the set of rational numbers. 2 Thus, from the point of view of set cardinality,
these “holes” between the rationals must be relatively large.

2.1. The Least Upper Bound Property. A most fundamental property of the
real number line is the following, called the least upper bound property :

• Every nonempty subset of R bounded from above has a least upper bound.

To be more precise, if A is a subset of R that has an upper bound (i.e., an element
M ∈ R such that x ≤M for every x ∈ A), then there exists a least upper bound of
A, that is, a number α ∈ R such that:

2If the irrationals R \ Q is countable, then so is R = Q ∪ (R \ Q), which is a contradiction.
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• α is an upper bound for A, in the sense mentioned above.
• α is less than or equal to any other upper bound for A.

This least upper bound of A is typically denoted supA. 3

Exercise 2. Can a subset A ⊆ R that is bounded from above have more than one
least upper bound? Why or why not?

Exercise 3. Show that any A ⊆ R which is bounded from below has a greatest
lower bound, which is typically denoted inf A. 4

Note in particular that the set Q of rational numbers does not have the least
upper bound property. Indeed, the subset

{q ∈ Q | q2 < 2},

that is, the set of all rational numbers with absolute value less than
√

2, is bounded
from above but has no least upper bound in Q.

The least upper bound property for R is essential for establishing many of the
most basic properties of real numbers. Here, we focus on one such property which
provides a clear contrast to a result proved in the previous section.

Theorem 2.1. If x is a positive real number, and if n ∈ N, then there exists a
unique positive real number y such that yn = x. In other words, every positive real
number has a unique positive real n-th root. 5

Proof. 6 Consider the set

E = {t ∈ R | tn < x}.
This E is nonempty, since if t = x/(1 + x), then

0 < t < 1, tn < t < x,

so that t ∈ E. Moreover, E is bounded from above, since if t > 1 + x, then

tn ≥ t > x,

and hence 1 +x is an upper bound of E. Thus, by the least upper bound property,
then E has a least upper bound y = supE.

We wish to show that y is in fact the n-th root of x. To accomplish this, we
show that contradictions occur when one assumes either yn < x or yn > x.

First, suppose yn < x. Then, given 0 < h < 1, we have

(y + h)n − yn = h

n−1∑
k=0

(y + h)kyn−1−k < hn(y + 1)n−1.

If this h is sufficiently small (one can directly solve for how small h must be), then

(y + h)n − yn < hn(y + 1)n−1 < x− yn, (y + h)n < x.

Thus, y + h ∈ E. This contradicts that y is an upper bound for E.

3supA is often referred to as the supremum of A.
4inf A is often referred to as the infimum of A.
5Here, we assume multiplication of real numbers is well-defined. The actual construction of

the real numbers and its basic arithmetic operations, though, is rather nontrivial.
6From [1].
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Next, suppose yn > x. Then, for 0 < h < y, we have

yn − (y − h)n = h

n−1∑
k=0

yk(y − h)n−1−k < hnyn−1 < yn − x,

as long as h is sufficiently small. Thus, with this h, we have (y − h)n > x, which
contradicts that y is the least upper bound for E. �

Due to the least upper bound property, the real numbers succeed where the ratio-
nals fail – one cannot take n-th roots of positive rational numbers while remaining
within the rationals, but this can be done instead with the real numbers.

Exercise 4. Prove the following Archimedean property for the real numbers: if x
and y are positive real numbers, then there exists some n ∈ N such that nx > y.
Hint: Assume the above is false, and apply the least upper bound property.

The above demonstrates that the real numbers have many “nicer” properties
than the rationals, thanks to the least upper bound property. But why, though,
does R satisfy this least upper bound property? The answer lies in how the real
number line is formally constructed. In other words, one must define the real
number line rather carefully so that this property is indeed satisfied.

One common method for defining R is via Dedekind cuts, named after Richard
Dedekind. A subset A ⊆ Q is called a cut iff the following conditions hold:

• A 6= ∅, and A 6= Q.
• If p ∈ A, then A contains every rational number smaller than p.
• If p ∈ A, then there exists some q ∈ A such that p < q. In other words, A

contains no largest element.

The real number line R can then be defined as the set of all cuts.
The intuition behind this construction is the following: every “real number x”

is defined to the set of all rational numbers strictly smaller than x. Note R can be
thought of as containing the rational numbers, since each p ∈ Q can be identified
with the cut {q ∈ Q | q < p} of all rationals smaller than p. However, R contains

more than just Q. For example, the “irrational number
√

2” is defined by the cut

{q ∈ Q | q < 0 or q2 < 2}.

One advantage of the Dedekind cut method is that comparing real numbers is
easy to define. Given cuts x, y ∈ R, we can define x ≤ y to simply mean x ⊆ y.
Indeed, if we think of x as “all the rationals less than x”, then x < y must mean
that y contains more rational numbers than x.

Another related advantage of Dedekind cuts is that the least upper bound prop-
erty is relatively simple to establish. Indeed, suppose B is a subset of R that is
bounded from above, and let α be the union of all the elements (i.e., cuts) in B.
One can then show in a fairly straightforward manner that this union α is itself a
cut, and moreover, it is the least upper bound of B.

Exercise 5. Show that R satisfies the least upper bound property.

The main disadvantage of the Dedekind cut approach is that establishing the
algebraic operations for the real numbers is a rather cumbersome process. There
are other ways of constructing the real numbers such that this task is easier, but
there, the least upper bound property is less apparent.
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2.2. Completeness. Another way to think of the real numbers “filling in the
holes” is via the notion of “completeness”. Consider the infinite expansion

√
2 = 1.41421 . . . .

One can approximate
√

2 as closely as one would like using only rational numbers.
For example, using decimal expansions, one can do this with the sequence

1, 1.4, 1.41, 1.414, . . . .

A similar argument works for any real number. As a result of this, we say that the
rational numbers form a dense subset of the real numbers.

Thus, one can see the real numbers as “filling in the missing slots not covered by
the rationals”. However, another question one can pose is whether the real number
“fills in all the available missing slots”. This is where the notion of completeness
comes into play. Here, we shall show that the real number line is “complete”, in
the sense that all potential “slots” are in fact filled in.

To be much more precise, we say that a sequence x1, x2, . . . of real numbers is
called a Cauchy sequence iff the following condition holds:

For any positive real number ε, there exists a natural number N0 such that
|xn − xm| < ε for all natural numbers n,m satisfying n,m ≥ N0.

In other words, the xn’s become arbitrarily close to each other as n becomes arbi-
trarily large. Intuitively, since the xn’s bunch infinitely closer and closer together,
we can think of Cauchy sequences as sequences that “approximate something”.

In general, we say that a space is complete iff all Cauchy sequences in that space
actually converge within the space. 7 Our goal here is then to show that the real
number line R is complete. In other words, every Cauchy sequence in R – i.e.,
every sequence meant to “approximate something” – does in fact approximate an
actual real number. From a more visual perspective, one can think of this as the
real numbers “having no potential holes”.

Remark. This notion of completeness is also remarkably useful in other spaces
besides the real numbers. For example, when solving differential equations, one
often uses some iteration process to generate a sequence of “approximate solutions”.
In order to obtain an actual solution from these approximate solutions, one can
sometimes rely on completeness. By showing that these approximate solutions form
a Cauchy sequence in some complete space, then this sequence must converge to
something, which one then shows is the actual solution.

One usually shows the completeness of the real line using a general argument
that can be adapted to many other types of spaces. 8 Here, however, we accomplish
this goal specifically for the real numbers in a more elementary fashion, using the
least upper bound property (again!). The main technical mechanism, besides the
least upper bound property itself, is the following result.

Exercise 6. Let (xn) be a bounded nondecreasing sequence of real numbers, i.e.,

x1 ≤ x2 ≤ x3 ≤ · · · ≤M , M ∈ R.

7As given, this is of course too ambiguous of a statement. To be rigorous, one needs to define

a formal notion of convergence and limits on this “space”.
8See, e.g., [1].
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Show that this sequence in fact converges. (Hint: Consider the least upper bound
of the xn’s, and show that this is in fact the limit.) Similarly, show that a bounded
nonincreasing sequence of real numbers also converges.

Suppose now that x1, x2, . . . is a Cauchy sequence of real numbers. Since the
xn’s must all eventually “cluster together” near some point, then the set of points
{x1, x2, . . . } is in fact bounded (can you show this?). As a result, by the least upper
bound property, we can define the following numbers:

Mn = sup{xn, xn+1, xn+2, . . . }, mn = inf{xn, xn+1, xn+2, . . . }, n ∈ N.

Note that mn ≤Mn for each n. As the Mn’s form a nonincreasing sequence, then
by the preceding exercise, the Mn’s have a limit

M = lim sup
n

xn = lim
n
Mn.

By a completely analogous reasoning, the mn’s also have a limit

m = lim inf
n

xn = lim
n
mn.

We wish to use the Cauchy sequence property to show that M = m. Given ε > 0,
then by definition, there is some N0 such that |xn−xm| < ε for all n,m ≥ N0. As a
result, it follows that |Mn −mn| ≤ ε for any n ≥ N0. Our desired equality M = m
follows immediately from the above.

We want to show that M = m is in fact the limit of the xn’s. For this, we can
simply apply a “squeeze theorem” argument. By definition, we have

mn ≤ xn ≤Mn, n ∈ N.

Since the mn’s and Mn’s both converge to the same element M = m, then the xn’s
must also converge to this element. This proves that R is indeed complete.

To conclude, we remark that we can also use completeness in order to give an
alternate construction of the real numbers. For this, we define the real number line
R to be the set of all Cauchy sequences of rational numbers, with the additional
caveat that two such sequences (xn) and (yn) are “the same” iff

lim
n↗∞

|xn − yn| = 0,

that is, they have the same limit. Intuitively, we identify a “real number x” with
the class of sequences of rational numbers that converge to x.

One can show (after some considerable effort) that this construction is essentially
equivalent to the Dedekind cut method. Algebraic operations are easier to describe
in this setting, since one can easily add and multiply sequences element-wise. On
the other hand, the least upper bound property is more difficult to establish.

Finally, we note that this Cauchy sequence “completion” approach can be di-
rectly generalized to other spaces besides the real numbers. Indeed, this method
provides a rather generalized template for “filling the holes” in spaces.
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