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1. SOLVING ORDINARY DIFFERENTIAL EQUATIONS
Consider first basic algebraic equations with an unknown, e.g.,
3(xz +2) = 18, 32% = cosz.

Such equations model some scenario in which one wishes to solve for some numerical
value, represented by x, given some properties satisfied by x.

Let us now complicate our situation. The above equations contained only alge-
braic operations: addition, multiplication, exponentiation, and trigonometric oper-
ations. In many cases, one would also like to add differential or integral operations
to the mix. For example, consider now the equation

/
y =Y,
which says that the derivative of y is equal to y itself. In contrast to the previous
algebraic equations, where we were solving for a numerical value z, here we are
solving for a function y of a single variable, say t. !

With some intuition from basic calculus, we can essentially guess the solutions
of the above differential equation. For example, the functions

yi(t) =e',  ya(t) = 10€'
satisfy the equation y’ = y. In fact, any function of the form

y(t) = Ce’, C eR,

is a solution to this differential equation. 2

In many cases, we do not merely want a solution. We want to also establish that
such a solution is unique, i.e., that it is the only solution to the equation. In order
to tweak our basic example above so that we have unique solutions, the natural
step is to convert it to an initial value problem. For example, if we wish to solve

v =y, y0)=1,

that is, we wish to find a function y whose derivative is itself and its value at 0 is
1, then this problem actually has the unique solution y(t) = €.

Differential equations are used for modeling many real world phenomena, such as
the motion of particles and population dynamics. One common and basic example

WWhen y is a function of a single variable, we refer to such equations as ordinary differential
equations. If we are dealing with functions of several variables, then such equations are called
partial differential equations. The study of such partial differential equations comprises a major
area of research in both pure and applied mathematics.

21n fact, these are all the solutions to this equation.
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is the motion of a block attached to a spring. If one ignores frictional forces, then
the motion of the block is described by Hooke’s Law:

my" = —ky.

Here, the unknown function y = y(t) represents the position of the block at time
t, while the positive constants m and k represent the mass of the block and the
strength of the spring. We set y = 0 to represent the “equilibrium position”, while
the regions y < 0 and y > 0 represent positions in which the spring is compressed
and stretched, respectively. Recalling the basic principles of Newtonian mechanics,
then the above equation states that the force exerted on the block by the spring
(i.e., the mass times the acceleration of the block) is toward the central “equilibrium
position” y = 0. Moreover, the strength of this force is directly proportional to the
distance the block is away from the equilibrium position.
From inspection, one sees that the solutions of this equation are of the form

- (52 s om 5.

If we also require initial conditions for y(0) and y’(0), then one has a unique solution.
In other words, absent frictional forces, the block oscillates indefinitely about y = 0,
with a frequency determined by k& and m. This is called simple harmonic motion.

Now, for the example equations mentioned above, one can find explicit simple
solutions with relative ease. What if one presents a nastier equation, for instance,

y' =y* +siny,  y(0) =17
We can no longer find explicit solutions constructed using only elementary func-
tions, as before. However, even without the simple answers, could we still establish
that solutions exist? Could we also show that such solutions are unique? The an-

swer to these questions can often be reached using the “analytic toolbox” that we
have developed by extending our understanding of limits and continuity.

1.1. Existence and Uniqueness. We now show how one can prove the existence
and uniqueness of solutions in general. Consider the initial value problem

y=1rfw, y0)=c
Here, y is the unknown function that we wish to find. As our method for solving
such differential equations will be quite general, it will not be any more difficult to
solve this general equation as opposed to something more specific.
In this text, we wish to prove the following result.

Theorem 1.1. Suppose f is differentiable, and suppose f' is a bounded function.
Then, there exists some time 0 < T < oo, depending on f, such that the above
initial value problem has a unique solution y : [0,T] — R.

Remark. We actually made many more assumptions in Theorem 1.1 than neces-
sary, for simplicity. However, one can make the result even more general.

(1) One does not require f’ to be bounded everywhere. Such global bounds are
overkill, as mere local bounds for f' will suffice. In particular, the existence
and uniqueness result is still valid whenever f is any polynomial function.

(2) In fact, we need not assume f is differentiable at all. The conclusions of
Theorem 1.1 still hold if this differentiability hypothesis is replaced by a
weaker “Lipschitz continuity” condition.
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While the above points are extremely important for theoretical purposes, here we will
focus only on the simplified version presented in Theorem 1.1, in order to avoid a
multitude of technical details in the proof.

The strategy for solving this equation is via an iteration scheme. We begin with
an arbitrary “initial” function. In each step of the iteration process, we produce
a better approximation to the actual solution than the one before. By continuing
this indefinitely, we obtain a sequence of successively closer approximations.

The final step is to advance from our sequence of approximations to an actual
solution of the equation. To accomplish this, we will need our general notions of
completeness and limits. In particular, we show that this sequence of approxima-
tions is a Cauchy sequence in the metric space C[0,T], with the distance function

d(f,g) = sup |[f(z)—g(@)|.
z€[0,T
Since C[0,T] is complete, then this sequence of approximations has a limit, which
we can then show is the actual solution to the differntial equation.

1.2. The Iteration Process. We now describe in detail the iteration scheme. The
first step is to restate our differential equation as the equivalent integral equation,

y(t) = c+ / F(y(s))ds.

The integral equation follows from the differential equation, and vice versa, by the
fundamental theorem of calculus.
Consider now the following function:

®:C[0,T] — C[0,T], D(y) = c+/0 fy(s))ds.

The precise value of T' will be determined later. Then, a function y solves the
desired integral (or differential) equation if and only if y is a fized point of ®, i.e.,

(y) =y
Thus, we can restate our integral equation as a fixed point problem.
We construct our iteration as follows:

e The “initial function” y; can be any continuous function. For example, we
can begin with the constant function, y; = c.
e Define the next iterate yo by applying the integral equation to y;:

Y2 = ®(y1), ya(t) = c+/0 Fy1(8))ds.

e One continues this inductively. Given an iterate y,, we define

Ynt1 = PYn),  Ynta1(t) = c+/0 f(yn(s))ds.

Through this process, the ¥,’s become closer and closer to our final solution. In
order for this to work, though, we need our final time T to be “sufficiently small”.
The main step is the following estimate:

d(yn+17 yn) = d((I)(yn)> é(ynfl))

o+ | ' F(ya(e))ds — e - / ' P (s))ds

= sup
t€[0,T)
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t
= sup | [ 1/0a(9) = Famr(5))ds].

tef0,7] | Jo
At this point, we can apply a crude bound to the right-hand side. Indeed, for each
such s, the integrand here is at most

sup [f(yn(2)) — f(yn-1(2))I-

z€[0,T]

Also, our domain [0, ¢] has length at most 7. As a result, we have the estimate

A(Ynt1,9n) <T sup |f(yn(2)) = f(yn-1(2))I.
z€1[0,T]
To control the right-hand side here, we must invoke the assumption that f’ is
bounded. To be more specific, we assume that |f'(x)] < R for all . For a fixed
z € [0,T], we know from the mean value theorem that

[f(wn(2)) = F(yn-1()] < 1 (@)yn(2) = yn-1(2)]
for some point z* between y,(z) and y,—1(z). Therefore, by our boundedness

assumption on f’ and our definition of the C[0, T]-distance, we have

d(yn+1a yn) é TR- d(ynv yn71)~
Now, if our time of existence T is small enough, i.e., if T' < 1/(2R), then

1
d(ynJrlv yn) < id(yna ynfl)‘
In other words, the “distance” between any two adjacent iterates is at most half of
that between the previous two adjacent iterates. Thus, very far into our iteration

process, i.e., when n is large, then d(yn11,y,) must be extremely small.

1.3. Completeness and Convergence. From our iteration scheme, we have con-
structed a sequence of functions in the metric space C[0, T] which clump closer and
closer together. These functions form approximate solutions which edge succes-
sively closer to the actual solution of the differential equation. The next step is to
show that this sequence does in fact converge in the way we intended. As mentioned
before, the main mechanism we need is the notion of completeness.

Lemma 1.2. The sequence y1,Y2,Ys, ... is a Cauchy sequence in C[0,T].

Proof. Fix natural numbers m,n; without loss of generality, we can assume that
m < n. By the triangle inequality satisfied by the metric d, then

n—1
A(Ym, Yn) < Z d(Yk+1, Yk)-
k=m
Now, for each k, we can by induction show that

1 1
d(Yr+1.Yr) < §d(yk,yk—1) < Zd(yk—layk—Q) << 27%d(y1, o),

where we used the main property we have shown for our iteration scheme. Com-
bining the above, then we see that

n—1 00
d(Ym>yn) < d(y1,90) D 278 <27 d(yr,90) Y27 <27 d(yn, o).
k=m k=0

As a result, by choosing m and n to be sufficiently large, we can make d(y,, y,) as
small as we like. Consequently, the sequence (yy) is Cauchy. (]
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Since our metric space C[0,T] is complete, then the yx’s have a limit y (with
respect to the metric d on C[0,T]). The last step is to show that y is a solution to
the differential equation, that is, y is a fixed point of ®.

Lemma 1.3. The following continuity condition holds:
®(y) = lim &(yn).
Exercise 1. Prove Lemma 1.3!
With Lemma 1.3 in hand, we now have that
O(y) = lim O(y,) = lim yn41 =y

Moreover, since yi(0) = ¢ for every k, then y(0) = ¢ as well, so that y is indeed the
solution to our initial value problem!

We have now established that a solution y to our initial value problem ezists.
We have not yet shown that this solution is unique. To complete this final part,
suppose w is another solution to our initial value problem. Then, by a process that
is analogous to our estimate for our iteration scheme, we can show

1

i) = @) o) < s [ 17(0(6) - Sw)lds < o).
te[0,T]

The only way the above can hold is if d(y,w) = 0. As a result, y = w, and we have

proved that our solution is in fact unique!

Exercise 2. Prove the above bound, needed for the proof of uniqueness.
This completes the proof of Theorem 1.1.

1.4. Global Solutions? Theorem 1.1 guarantees the existence and uniqueness of
a local solution y : [0,T] — R to our initial value problem, if T is sufficiently small.
Can we push the solution further indefinitely? Can we find a global solution to our
initial value problem? In other words, is there a (unique) solution of the form

y:[0,00) =R,y =f(y), y(0)=c

In the setting of Theorem 1.1, the answer is “yes”, due to f’ being globally
bounded. In our iteration scheme, we needed that the “time of existence” T be
sufficiently small with respect to our bound R for f’. Now, let us apply Theorem
1.1 again, but with initial data ¢; = y(7T'/2), rather than ¢. This once again yields
a local solution on a time interval of length T

Since these local solutions must be unique, then the first half of this new solution
(with initial data ¢;) must coincide with our original solution y (with initial data
¢) on the interval [T/2,T]. Thus, we can “glue” these two solutions together and
obtain a new longer local solution y; : [0,37/2] — R.

Repeating this process, now with initial data co = y(T') yields an even longer
solution ys : [0,27] — R. Tterating indefinitely and “gluing” appropriately, we
obtain a (unique) global solution y : [0,00) — R to our initial value problem!

REFERENCES

1. W. Rudin, Principles of mathematical analysis, McGraw-Hill, Inc., 1976.
2. J. Stewart, Multivariable calculus, 7 ed., Brooks/Cole, 2012.



