THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS

ARICK SHAO

In this short note, we solve the Cauchy, or initial value, problem for general fully nonlinear first-order PDE. Throughout, our PDE will be defined by the function

$$F: \mathbb{R}^2_{x,y} \times \mathbb{R}_z \times \mathbb{R}^2_{p,q} \to \mathbb{R}.$$

We also fix an open interval $I \subseteq \mathbb{R}$, as well as functions $f, g, h: I \to \mathbb{R}$. In particular,

$$\Gamma := \{ (f(r), g(r)) \mid r \in I \}$$

is the curve on which we impose the initial data, while h represents the initial data itself. More specifically, our goal is to solve the following Cauchy problem:

(1)
$$F(x, y, u, \partial_x u, \partial_y u) = 0, \qquad u(f(r), g(r)) = h(r).$$

Our main result is as follows:

Theorem 1. Let $F \in C^2(\mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^2)$, and let $f, g, h \in C^2(I)$. Moreover, let $r_0 \in I$ and $p_0, q_0 \in \mathbb{R}$ such that the following admissibility conditions are satisfied:

$$f'(r_0) \cdot p_0 + g'(r_0) \cdot q_0 = h'(r_0),$$

(3)
$$F(f(r_0), g(r_0), h(r_0), p_0, q_0) = 0$$

(3)
$$F(f(r_0), g(r_0), h(r_0), p_0, q_0) = 0,$$
(4)
$$\det \begin{bmatrix} f'(r_0) & g'(r_0) \\ \partial_p F(f(r_0), g(r_0), h(r_0), p_0, q_0) & \partial_q F(f(r_0), g(r_0), h(r_0), p_0, q_0) \end{bmatrix} \neq 0.$$

Then, there exists a neighbourhood $\mathcal{U} \subseteq \mathbb{R}^2$ of $(f(r_0), g(r_0))$ such that the Cauchy problem (1) has a unique solution $u \in C^2(\mathcal{U})$ that satisfies the additional conditions

(5)
$$\partial_x u(f(r_0), g(r_0)) = p_0, \qquad \partial_y u(f(r_0), g(r_0)) = q_0.$$

Remark. In the quasilinear case,

$$F(x, y, z, p, q) = a(x, y, z)p + b(x, y, z)q - c(x, y, z),$$

one no longer needs to choose p_0, q_0 beforehand. To see this, note that:

• The noncharacteristic condition (4) is independent of p_0 and q_0 , as it reduces to

(6)
$$\det \begin{bmatrix} f'(r_0) & g'(r_0) \\ a(f(r_0), g(r_0), h(r_0)) & b(f(r_0), g(r_0), h(r_0)) \end{bmatrix} \neq 0.$$

• The remaining admissibility conditions (2), (3) are also unnecessary, as these now become

$$f'(r_0) \cdot p_0 + g'(r_0) \cdot q_0 = h'(r_0),$$

$$a(f(r_0), g(r_0), h(r_0))p_0 + b(f(r_0), g(r_0), h(r_0))q_0 = c(x(r_0), y(r_0), z(r_0)),$$

and (6) quarantees that the above yields exactly one possible pair (p_0, q_0) .

Remark. Furthermore, for the quasilinear case, we need only assume $a, b, c \in C^1$ and $f, g, h \in C^1$. This yields a unique solution $u \in C^1$. Less regularity is required here than in the fully nonlinear case, since if one proves the quasilinear analogue of Theorem 1 directly (without referring to the fully nonlinear case), then one can avoid altogether p, q, and second derivatives of u.

2 ARICK SHAO

Proof of Theorem 1: Existence. The first step for proving existence is to construct a set of similarly admissible data on Γ near $(f(r_0), g(r_0))$:

Lemma 1. There exists an open interval $J \subseteq I$ containing r_0 , and there exist unique $w, v \in C^1(J)$ such that $(w(r_0), v(r_0)) = (p_0, q_0)$, and such that the following hold for every $r \in J$:

(7)
$$f'(r) \cdot w(r) + g'(r) \cdot v(r) = h'(r),$$

(8)
$$F(f(r), g(r), h(r), w(r), v(r)) = 0,$$

Furthermore, J, w, and v can be chosen such that for each $r \in J$,

(9)
$$\det \begin{bmatrix} f'(r) & g'(r) \\ \partial_p F(f(r), g(r), h(r), w(r), v(r)) & \partial_q F(f(r), g(r), h(r), w(r), v(r)) \end{bmatrix} \neq 0.$$

Proof. Consider the map $\Phi: \mathbb{R}_r \times \mathbb{R}^2_{P,Q} \to \mathbb{R}^2$ given by

$$\Phi(r, P, Q) := (f'(r) \cdot P + g'(r) \cdot Q - h'(r), F(f(r), g(r), h(r), P, Q)).$$

Note that (2) and (3) imply that $\Phi(r_0, p_0, q_0) = 0$. Moreover, since F, f, g, h are C^2 , then Φ is C^1 . We now compute the derivative of Φ with respect to P and Q at (r_0, p_0, q_0) :

$$D_{P,Q}\Phi|_{(r_0,p_0,q_0)} = \begin{bmatrix} f'(r_0) & g'(r_0) \\ \partial_p F(f(r_0),g(r_0),h(r_0),p_0,q_0) & \partial_q F(f(r_0),g(r_0),h(r_0),p_0,q_0) \end{bmatrix}.$$

In particular, (4) implies $D_{P,Q}\Phi|_{(r_0,p_0,q_0)}$ is nonsingular. By the implicit function theorem, there exists an open interval $J\subseteq I$ and a unique C^1 -function $\Psi=(w,v):J\to\mathbb{R}^2$ such that

$$\Phi(r, \Psi(r)) = \Phi(r, w(r), v(r)) = 0, \qquad r \in J.$$

The definition of Φ now implies that (7) and (8) hold for $r \in J$. Finally, by reducing J if necessary, then continuity implies that (9) also holds for $r \in J$.

Now that we have w and v set, we can set up the characteristic equations. Set

$$\tilde{\gamma}(r,s) := (x(r,s), y(r,s), z(r,s), p(r,s), q(r,s)), \qquad \gamma(r,s) := (x(r,s), y(r,s)),$$

and recall that the characteristic equations are precisely the following initial value problem:

(10)
$$\partial_{s}x(r,s) = \partial_{p}F(\tilde{\gamma}(r,s)), \qquad x(r,0) = f(r),$$

$$\partial_{s}y(r,s) = \partial_{q}F(\tilde{\gamma}(r,s)), \qquad y(r,0) = g(r),$$

$$\partial_{s}z(r,s) = \partial_{p}F(\tilde{\gamma}(r,s)) \cdot p(r,s) + \partial_{q}F(\tilde{\gamma}(r,s)) \cdot q(r,s), \qquad z(r,0) = h(r),$$

$$\partial_{s}p(r,s) = -\partial_{x}F(\tilde{\gamma}(r,s)) - \partial_{z}F(\tilde{\gamma}(r,s)) \cdot p(r,s), \qquad p(r,0) = w(r),$$

$$\partial_{s}q(r,s) = -\partial_{y}F(\tilde{\gamma}(r,s)) - \partial_{z}F(\tilde{\gamma}(r,s)) \cdot q(r,s), \qquad q(r,0) = v(r),$$

Here, s represents the parameter along the characteristic curves, while r parametrises the characteristic curves corresponding to the point on Γ that they intersect.

Since the right-hand sides of the equations in (10) are C^1 -functions of $\tilde{\gamma}(r,s)$, and since the initial data f, g, h, w, r are at least C^1 , then standard ODE theory yields:

Lemma 2. There exists an open rectangle $\mathcal{R} \subseteq \mathbb{R}^2$ about $(r_0, 0)$, on which there exists a unique C^1 -function $\tilde{\gamma} : \mathcal{R} \to \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^2$ which solves the system (10).

Since (7) and (8) represent consistency conditions for solutions, it is important to show that (7) and (8) are propagated along the characteristic curves:

Lemma 3. The following conditions hold for each $(r, s) \in \mathcal{R}$:

(11)
$$\partial_r x(r,s) \cdot p(r,s) + \partial_r y(r,s) \cdot q(r,s) = \partial_r z(r,s),$$

(12)
$$F(x(r,s), y(r,s), z(r,s), p(r,s), q(r,s)) = 0.$$

Proof. First, by the chain rule and then by (10),

$$\partial_{s}[F(\tilde{\gamma}(r,s))] = \partial_{x}F(\tilde{\gamma}(r,s)) \cdot \partial_{s}x(r,s) + \partial_{y}F(\tilde{\gamma}(r,s)) \cdot \partial_{s}y(r,s) + \partial_{z}F(\tilde{\gamma}(r,s)) \cdot \partial_{s}z(r,s) + \partial_{p}F(\tilde{\gamma}(r,s)) \cdot \partial_{s}p(r,s) + \partial_{q}F(\tilde{\gamma}(r,s)) \cdot \partial_{s}q(r,s) = 0.$$

Since (8) is simply that $F(\tilde{\gamma}(r,0)) = 0$, we can conclude (12). Next, for (11), we define

$$A(r,s) := \partial_r x(r,s) \cdot p(r,s) + \partial_r y(r,s) \cdot q(r,s) - \partial_r z(r,s).$$

A direct computation using (10) and (12) yields

$$\begin{split} \partial_s A(r,s) &= \partial_r \partial_p F(\tilde{\gamma}(r,s)) \cdot p(r,s) + \partial_r x(r,s) \cdot \left[-\partial_x F(\tilde{\gamma}(r,s)) - \partial_z F(\tilde{\gamma}(r,s)) \cdot p(r,s) \right] \\ &+ \partial_r \partial_q F(\tilde{\gamma}(r,s)) \cdot q(r,s) + \partial_r y(r,s) \cdot \left[-\partial_y F(\tilde{\gamma}(r,s)) - \partial_z F(\tilde{\gamma}(r,s)) \cdot q(r,s) \right] \\ &- \partial_r [\partial_p F(\tilde{\gamma}(r,s)) \cdot p(r,s) + \partial_q F(\tilde{\gamma}(r,s)) \cdot q(r,s)] \\ &= -\partial_r x(r,s) \cdot \partial_x F(\tilde{\gamma}(r,s)) + \partial_z F(\tilde{\gamma}(r,s)) \cdot \partial_r x(r,s) \cdot p(r,s) \\ &- \partial_r y(r,s) \cdot \partial_y F(\tilde{\gamma}(r,s)) + \partial_z F(\tilde{\gamma}(r,s)) \cdot \partial_r y(r,s) \cdot q(r,s) \\ &- \partial_p F(\tilde{\gamma}(r,s)) \cdot \partial_r p(r,s) - \partial_q F(\tilde{\gamma}(r,s)) \cdot \partial_r q(r,s) \\ &= -\partial_r [F(\tilde{\gamma}(r,s))] + \partial_z F(\tilde{\gamma}(r,s)) \cdot A(r,s) \\ &= \partial_z F(\tilde{\gamma}(r,s)) \cdot A(r,s). \end{split}$$

Since A(r,0) = 0 by (7), then either Gronwall's inequality or solving the above directly yields A(r,s) = 0 for all $(r,s) \in \mathcal{R}$, which is the remaining relation (11).

In particular, Lemma 2 implies that the projected characteristic map γ defines a C^1 change of variables from (r,s) to (x,y)=(x(r,s),y(r,s)). Next, we show that γ can be locally inverted:

Lemma 4. There exists an open rectangle $\mathcal{R}' \subseteq \mathcal{R}$ about $(r_0, 0)$ on which $\gamma|_{\mathcal{R}'}$ is one-to-one and $D\gamma|_{\mathcal{R}'}$ is everywhere nonsingular. Furthermore, this local inverse ϕ of $\gamma|_{\mathcal{R}'}$ is C^1 .

Proof. A direct computation using (10) shows that at $(r_0, 0)$, we have

$$D\gamma|_{(r_0,0)} = \begin{bmatrix} f'(r_0) & g'(r_0) \\ \partial_p F(f(r_0), g(r_0), h(r_0), p_0, q_0) & \partial_q F(f(r_0), g(r_0), h(r_0), p_0, q_0) \end{bmatrix}$$

Since (4) implies the above is nonsingular, the inverse function theorem yields the desired ϕ .

We can now construct our solution u by

$$u = z \circ \phi \in C^1(\mathcal{U}), \qquad \mathcal{U} = \gamma(\mathcal{R}'),$$

which by the invertibility in Lemma 4 is equivalent to

(13)
$$u(x(r,s),y(r,s)) = z(r,s), \qquad (r,s) \in \mathcal{R}'.$$

By the chain rule, we compute from (13) that

(14)
$$\partial_r z(r,s) = \partial_r x(r,s) \cdot \partial_x u(x(r,s),y(r,s)) + \partial_r y(r,s) \cdot \partial_y u(x(r,s),y(r,s)),$$
$$\partial_s z(r,s) = \partial_s x(r,s) \cdot \partial_x u(x(r,s),y(r,s)) + \partial_s y(r,s) \cdot \partial_y u(x(r,s),y(r,s)).$$

Moreover, from (11) and (10), we have

(15)
$$\partial_r z(r,s) = \partial_r x(r,s) \cdot p(r,s) + \partial_r y(r,s) \cdot q(r,s), \\ \partial_s z(r,s) = \partial_s x(r,s) \cdot p(r,s) + \partial_s y(r,s) \cdot q(r,s).$$

Since $D\gamma$ is invertible on \mathcal{R}' , one then concludes that

(16)
$$\partial_x u(x(r,s), y(r,s)) = p(r,s), \qquad \partial_y u(x(r,s), y(r,s)) = q(r,s).$$

4 ARICK SHAO

Note that (16) can be restated as

$$\partial_x u = p \circ \phi, \qquad \partial_u u = q \circ \phi.$$

Since the right-hand sides above are C^1 , it follows that $u \in C^2(\mathcal{U})$.

Finally, we show that u indeed solves (1). The initial condition holds, since by (13),

$$u(f(r), g(r)) = u(\gamma(r, 0)) = z(r, 0) = h(r).$$

In addition, u solves the PDE, since by (12), (13), and (16),

$$F(\gamma(r,s), u(\gamma(r,s)), \nabla u(\gamma(r,s))) = F(\tilde{\gamma}(r,s)) = 0.$$

Since setting $(r, s) = (r_0, 0)$ in (16) yields

$$\partial_x u(f(r_0), g(r_0)) = p_0, \qquad \partial_y u(f(r_0), g(r_0)) = q_0,$$

this completes the proof of existence in Theorem 1.

Proof of Theorem 1: Uniqueness. Suppose \bar{u} is another C^2 -solution to (1) on \mathcal{U} . Since

$$F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) = 0, \quad (x, y) \in \mathcal{U},$$

taking partial derivatives of the above yields the following relations:

$$(17) \quad 0 = \partial_x F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) + \partial_z F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) \cdot \partial_x \bar{u}(x, y) + \partial_p F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) \cdot \partial_{xx}^2 \bar{u}(x, y) + \partial_q F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) \cdot \partial_{xy}^2 \bar{u}(x, y), 0 = \partial_y F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) + \partial_z F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) \cdot \partial_y \bar{u}(x, y) + \partial_p F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) \cdot \partial_{yx}^2 \bar{u}(x, y) + \partial_q F(x, y, \bar{u}(x, y), \nabla \bar{u}(x, y)) \cdot \partial_{yy}^2 \bar{u}(x, y).$$

Next, we define the functions $\lambda = (\bar{x}, \bar{y}) : \mathcal{R}' \to \mathbb{R}^2$ via the initial value problem

(18)
$$\partial_s \bar{x}(r,s) = \partial_p F(\lambda(r,s), \bar{u}(\lambda(r,s)), \nabla \bar{u}(\lambda(r,s))), \qquad \bar{x}(r,0) = f(r) = x(r,0),$$
$$\partial_s \bar{y}(r,s) = \partial_q F(\lambda(r,s), \bar{u}(\lambda(r,s)), \nabla \bar{u}(\lambda(r,s))), \qquad \bar{y}(r,0) = g(r) = y(r,0).$$

Indeed, standard ODE theory indicates that \bar{x} and \bar{y} exist, at least locally near $\mathcal{R}' \cap \{s = 0\}$, and are C^1 (since the right-hand sides of (18) are C^1 -functions of λ). Given λ , we next define

(19)
$$\bar{z}(r,s) = \bar{u}(\lambda(r,s)), \quad \bar{p}(r,s) = \partial_x \bar{u}(\lambda(r,s)), \quad \bar{q}(r,s) = \partial_y \bar{u}(\lambda(r,s)).$$

and, for convenience, the shorthands

$$\tilde{\lambda}(r,s) := (\bar{x}(r,s), \bar{y}(r,s), \bar{z}(r,s), \bar{p}(r,s), \bar{q}(r,s)).$$

Lemma 5. The following relations hold:

(20)
$$\bar{z}(r,0) = h(r) = z(r,0), \quad \bar{p}(r,0) = w(r) = p(r,0), \quad \bar{q}(r,0) = v(r) = q(r,0).$$

Proof. The first relation in (20) is an immediate consequence of the assumption that \bar{u} solves (1). For the remaining relations, we note from (1) that on the initial data curve Γ ,

$$F(\tilde{\lambda}(r,0)) = F(f(r), g(r), \bar{u}(f(r), g(r)), \nabla \bar{u}(f(r), g(r))) = 0,$$

$$f'(r) \cdot \bar{p}(r,0) + g'(r) \cdot \bar{q}(r,0) = d_{(f'(r), g'(r))} \bar{u}(f(r), g(r)) = h'(r).$$

Since we have assumed

$$\bar{p}(r_0,0) = \partial_x \bar{u}(f(r_0), q(r_0)) = p_0, \quad \bar{q}(r_0,0) = \partial_y \bar{u}(f(r_0), q(r_0)) = q_0,$$

the relations for \bar{p} and \bar{q} in (20) follow from the uniqueness of w, v in Lemma 1.

Lemma 6. The following identities hold for any $(r, s) \in \mathcal{R}'$:

(21)
$$\partial_{s}\bar{z}(r,s) = \partial_{p}F(\tilde{\lambda}(r,s)) \cdot \bar{p}(r,s) + \partial_{q}F(\tilde{\lambda}(r,s)) \cdot \bar{q}(r,s),$$
$$\partial_{s}\bar{p}(r,s) = -\partial_{x}F(\tilde{\lambda}(r,s)) - \partial_{z}F(\tilde{\lambda}(r,s)) \cdot \bar{p}(r,s),$$
$$\partial_{s}\bar{q}(r,s) = -\partial_{y}F(\tilde{\lambda}(r,s)) - \partial_{z}F(\tilde{\lambda}(r,s)) \cdot \bar{q}(r,s).$$

Proof. The first relation in (21) follows immediately from the chain rule and (18):

$$\partial_s \bar{z}(r,s) = \partial_s \bar{x}(r,s) \cdot \partial_x \bar{u}(\lambda(r,s)) + \partial_s \bar{y}(r,s) \cdot \partial_y \bar{u}(\lambda(r,s))$$
$$= \partial_p F(\tilde{\lambda}(r,s)) \cdot \bar{p}(r,s) + \partial_q F(\tilde{\lambda}(r,s)) \cdot \bar{q}(r,s).$$

Applying similar computations to \bar{p} , we see that

$$\begin{split} \partial_s \bar{p}(r,s) &= \partial_s \bar{x}(r,s) \cdot \partial_{xx} \bar{u}(\lambda(r,s)) + \partial_s \bar{y}(r,s) \cdot \partial_{yx} \bar{u}(\lambda(r,s)) \\ &= \partial_p F(\tilde{\lambda}(r,s)) \cdot \partial_{xx} \bar{u}(\lambda(r,s)) + \partial_q F(\tilde{\lambda}(r,s)) \cdot \partial_{yx} \bar{u}(\lambda(r,s)). \end{split}$$

Recalling the first equation in (17) results in the first relation in (21). The remaining relation for \bar{q} in (21) can be derived using analogous methods.

Finally, combining (18), (20), and (21), we see that $\tilde{\lambda}$ solves the same initial value problem (10) as $\tilde{\gamma}$. Thus, by standard uniqueness results for ODEs, we see that $\tilde{\lambda} = \tilde{\gamma}$. It then follows that

$$\bar{u}(x,y) = \bar{z}(\phi(x,y)) = z(\phi(x,y)) = u(x,y), \qquad (x,y) \in \mathcal{U},$$

which completes the proof of uniqueness.