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In this short note, we solve the Cauchy, or initial value, problem for general fully nonlinear
first-order PDE. Throughout, our PDE will be defined by the function

F : R2
x,y × Rz × R2

p,q → R.

We also fix an open interval I ⊆ R, as well as functions f, g, h : I → R. In particular,

Γ := {(f(r), g(r)) | r ∈ I}

is the curve on which we impose the initial data, while h represents the initial data itself.
More specifically, our goal is to solve the following Cauchy problem:

(1) F (x, y, u, ∂xu, ∂yu) = 0, u(f(r), g(r)) = h(r).

Our main result is as follows:

Theorem 1. Let F ∈ C2(R2×R×R2), and let f, g, h ∈ C2(I). Moreover, let r0 ∈ I and p0, q0 ∈ R
such that the following admissibility conditions are satisfied:

f ′(r0) · p0 + g′(r0) · q0 = h′(r0),(2)

F (f(r0), g(r0), h(r0), p0, q0) = 0,(3)

det

[
f ′(r0) g′(r0)

∂pF (f(r0), g(r0), h(r0), p0, q0) ∂qF (f(r0), g(r0), h(r0), p0, q0)

]
6= 0.(4)

Then, there exists a neighbourhood U ⊆ R2 of (f(r0), g(r0)) such that the Cauchy problem (1) has
a unique solution u ∈ C2(U) that satisfies the additional conditions

(5) ∂xu(f(r0), g(r0)) = p0, ∂yu(f(r0), g(r0)) = q0.

Remark. In the quasilinear case,

F (x, y, z, p, q) = a(x, y, z)p+ b(x, y, z)q − c(x, y, z),

one no longer needs to choose p0, q0 beforehand. To see this, note that:

• The noncharacteristic condition (4) is independent of p0 and q0, as it reduces to

(6) det

[
f ′(r0) g′(r0)

a(f(r0), g(r0), h(r0)) b(f(r0), g(r0), h(r0))

]
6= 0.

• The remaining admissibility conditions (2), (3) are also unnecessary, as these now become

f ′(r0) · p0 + g′(r0) · q0 = h′(r0),

a(f(r0), g(r0), h(r0))p0 + b(f(r0), g(r0), h(r0))q0 = c(x(r0), y(r0), z(r0)),

and (6) guarantees that the above yields exactly one possible pair (p0, q0).

Remark. Furthermore, for the quasilinear case, we need only assume a, b, c ∈ C1 and f, g, h ∈ C1.
This yields a unique solution u ∈ C1. Less regularity is required here than in the fully nonlinear
case, since if one proves the quasilinear analogue of Theorem 1 directly (without referring to the
fully nonlinear case), then one can avoid altogether p, q, and second derivatives of u.
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Proof of Theorem 1: Existence. The first step for proving existence is to construct a set of
similarly admissible data on Γ near (f(r0), g(r0)):

Lemma 1. There exists an open interval J ⊆ I containing r0, and there exist unique w, v ∈ C1(J)
such that (w(r0), v(r0)) = (p0, q0), and such that the following hold for every r ∈ J :

f ′(r) · w(r) + g′(r) · v(r) = h′(r),(7)

F (f(r), g(r), h(r), w(r), v(r)) = 0,(8)

Furthermore, J , w, and v can be chosen such that for each r ∈ J ,

(9) det

[
f ′(r) g′(r)

∂pF (f(r), g(r), h(r), w(r), v(r)) ∂qF (f(r), g(r), h(r), w(r), v(r))

]
6= 0.

Proof. Consider the map Φ : Rr × R2
P,Q → R2 given by

Φ(r, P,Q) := (f ′(r) · P + g′(r) ·Q− h′(r), F (f(r), g(r), h(r), P,Q)).

Note that (2) and (3) imply that Φ(r0, p0, q0) = 0. Moreover, since F, f, g, h are C2, then Φ is C1.
We now compute the derivative of Φ with respect to P and Q at (r0, p0, q0):

DP,QΦ|(r0,p0,q0) =

[
f ′(r0) g′(r0)

∂pF (f(r0), g(r0), h(r0), p0, q0) ∂qF (f(r0), g(r0), h(r0), p0, q0)

]
.

In particular, (4) implies DP,QΦ|(r0,p0,q0) is nonsingular. By the implicit function theorem, there

exists an open interval J ⊆ I and a unique C1-function Ψ = (w, v) : J → R2 such that

Φ(r,Ψ(r)) = Φ(r, w(r), v(r)) = 0, r ∈ J .

The definition of Φ now implies that (7) and (8) hold for r ∈ J . Finally, by reducing J if necessary,
then continuity implies that (9) also holds for r ∈ J . �

Now that we have w and v set, we can set up the characteristic equations. Set

γ̃(r, s) := (x(r, s), y(r, s), z(r, s), p(r, s), q(r, s)), γ(r, s) := (x(r, s), y(r, s)),

and recall that the characteristic equations are precisely the following initial value problem:

∂sx(r, s) = ∂pF (γ̃(r, s)), x(r, 0) = f(r),(10)

∂sy(r, s) = ∂qF (γ̃(r, s)), y(r, 0) = g(r),

∂sz(r, s) = ∂pF (γ̃(r, s)) · p(r, s) + ∂qF (γ̃(r, s)) · q(r, s), z(r, 0) = h(r),

∂sp(r, s) = −∂xF (γ̃(r, s))− ∂zF (γ̃(r, s)) · p(r, s), p(r, 0) = w(r),

∂sq(r, s) = −∂yF (γ̃(r, s))− ∂zF (γ̃(r, s)) · q(r, s), q(r, 0) = v(r),

Here, s represents the parameter along the characteristic curves, while r parametrises the charac-
teristic curves corresponding to the point on Γ that they intersect.

Since the right-hand sides of the equations in (10) are C1-functions of γ̃(r, s), and since the initial
data f, g, h, w, r are at least C1, then standard ODE theory yields:

Lemma 2. There exists an open rectangle R ⊆ R2 about (r0, 0), on which there exists a unique
C1-function γ̃ : R → R2 × R× R2 which solves the system (10).

Since (7) and (8) represent consistency conditions for solutions, it is important to show that (7)
and (8) are propagated along the characteristic curves:

Lemma 3. The following conditions hold for each (r, s) ∈ R:

∂rx(r, s) · p(r, s) + ∂ry(r, s) · q(r, s) = ∂rz(r, s),(11)

F (x(r, s), y(r, s), z(r, s), p(r, s), q(r, s)) = 0.(12)
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Proof. First, by the chain rule and then by (10),

∂s[F (γ̃(r, s))] = ∂xF (γ̃(r, s)) · ∂sx(r, s) + ∂yF (γ̃(r, s)) · ∂sy(r, s) + ∂zF (γ̃(r, s)) · ∂sz(r, s)
+ ∂pF (γ̃(r, s)) · ∂sp(r, s) + ∂qF (γ̃(r, s)) · ∂sq(r, s)

= 0.

Since (8) is simply that F (γ̃(r, 0)) = 0, we can conclude (12).
Next, for (11), we define

A(r, s) := ∂rx(r, s) · p(r, s) + ∂ry(r, s) · q(r, s)− ∂rz(r, s).
A direct computation using (10) and (12) yields

∂sA(r, s) = ∂r∂pF (γ̃(r, s)) · p(r, s) + ∂rx(r, s) · [−∂xF (γ̃(r, s))− ∂zF (γ̃(r, s)) · p(r, s)]
+ ∂r∂qF (γ̃(r, s)) · q(r, s) + ∂ry(r, s) · [−∂yF (γ̃(r, s))− ∂zF (γ̃(r, s)) · q(r, s)]
− ∂r[∂pF (γ̃(r, s)) · p(r, s) + ∂qF (γ̃(r, s)) · q(r, s)]

= −∂rx(r, s) · ∂xF (γ̃(r, s)) + ∂zF (γ̃(r, s)) · ∂rx(r, s) · p(r, s)
− ∂ry(r, s) · ∂yF (γ̃(r, s)) + ∂zF (γ̃(r, s)) · ∂ry(r, s) · q(r, s)
− ∂pF (γ̃(r, s)) · ∂rp(r, s)− ∂qF (γ̃(r, s)) · ∂rq(r, s)

= −∂r[F (γ̃(r, s))] + ∂zF (γ̃(r, s)) ·A(r, s)

= ∂zF (γ̃(r, s)) ·A(r, s).

Since A(r, 0) = 0 by (7), then either Gronwall’s inequality or solving the above directly yields
A(r, s) = 0 for all (r, s) ∈ R, which is the remaining relation (11). �

In particular, Lemma 2 implies that the projected characteristic map γ defines a C1 change of
variables from (r, s) to (x, y) = (x(r, s), y(r, s)). Next, we show that γ can be locally inverted:

Lemma 4. There exists an open rectangle R′ ⊆ R about (r0, 0) on which γ|R′ is one-to-one and
Dγ|R′ is everywhere nonsingular. Furthermore, this local inverse φ of γ|R′ is C1.

Proof. A direct computation using (10) shows that at (r0, 0), we have

Dγ|(r0,0) =

[
f ′(r0) g′(r0)

∂pF (f(r0), g(r0), h(r0), p0, q0) ∂qF (f(r0), g(r0), h(r0), p0, q0)

]
Since (4) implies the above is nonsingular, the inverse function theorem yields the desired φ. �

We can now construct our solution u by

u = z ◦ φ ∈ C1(U), U = γ(R′),

which by the invertibility in Lemma 4 is equivalent to

(13) u(x(r, s), y(r, s)) = z(r, s), (r, s) ∈ R′.

By the chain rule, we compute from (13) that

∂rz(r, s) = ∂rx(r, s) · ∂xu(x(r, s), y(r, s)) + ∂ry(r, s) · ∂yu(x(r, s), y(r, s)),(14)

∂sz(r, s) = ∂sx(r, s) · ∂xu(x(r, s), y(r, s)) + ∂sy(r, s) · ∂yu(x(r, s), y(r, s)).

Moreover, from (11) and (10), we have

∂rz(r, s) = ∂rx(r, s) · p(r, s) + ∂ry(r, s) · q(r, s),(15)

∂sz(r, s) = ∂sx(r, s) · p(r, s) + ∂sy(r, s) · q(r, s).

Since Dγ is invertible on R′, one then concludes that

(16) ∂xu(x(r, s), y(r, s)) = p(r, s), ∂yu(x(r, s), y(r, s)) = q(r, s).
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Note that (16) can be restated as

∂xu = p ◦ φ, ∂yu = q ◦ φ.

Since the right-hand sides above are C1, it follows that u ∈ C2(U).
Finally, we show that u indeed solves (1). The initial condition holds, since by (13),

u(f(r), g(r)) = u(γ(r, 0)) = z(r, 0) = h(r).

In addition, u solves the PDE, since by (12), (13), and (16),

F (γ(r, s), u(γ(r, s)),∇u(γ(r, s))) = F (γ̃(r, s)) = 0.

Since setting (r, s) = (r0, 0) in (16) yields

∂xu(f(r0), g(r0)) = p0, ∂yu(f(r0), g(r0)) = q0,

this completes the proof of existence in Theorem 1.

Proof of Theorem 1: Uniqueness. Suppose ū is another C2-solution to (1) on U . Since

F (x, y, ū(x, y),∇ū(x, y)) = 0, (x, y) ∈ U ,

taking partial derivatives of the above yields the following relations:

0 = ∂xF (x, y, ū(x, y),∇ū(x, y)) + ∂zF (x, y, ū(x, y),∇ū(x, y)) · ∂xū(x, y)(17)

+ ∂pF (x, y, ū(x, y),∇ū(x, y)) · ∂2xxū(x, y) + ∂qF (x, y, ū(x, y),∇ū(x, y)) · ∂2xyū(x, y),

0 = ∂yF (x, y, ū(x, y),∇ū(x, y)) + ∂zF (x, y, ū(x, y),∇ū(x, y)) · ∂yū(x, y)

+ ∂pF (x, y, ū(x, y),∇ū(x, y)) · ∂2yxū(x, y) + ∂qF (x, y, ū(x, y),∇ū(x, y)) · ∂2yyū(x, y).

Next, we define the functions λ = (x̄, ȳ) : R′ → R2 via the initial value problem

∂sx̄(r, s) = ∂pF (λ(r, s), ū(λ(r, s)),∇ū(λ(r, s))), x̄(r, 0) = f(r) = x(r, 0),(18)

∂sȳ(r, s) = ∂qF (λ(r, s), ū(λ(r, s)),∇ū(λ(r, s))), ȳ(r, 0) = g(r) = y(r, 0).

Indeed, standard ODE theory indicates that x̄ and ȳ exist, at least locally near R′ ∩ {s = 0}, and
are C1 (since the right-hand sides of (18) are C1-functions of λ). Given λ, we next define

(19) z̄(r, s) = ū(λ(r, s)), p̄(r, s) = ∂xū(λ(r, s)), q̄(r, s) = ∂yū(λ(r, s)).

and, for convenience, the shorthands

λ̃(r, s) := (x̄(r, s), ȳ(r, s), z̄(r, s), p̄(r, s), q̄(r, s)).

Lemma 5. The following relations hold:

(20) z̄(r, 0) = h(r) = z(r, 0), p̄(r, 0) = w(r) = p(r, 0), q̄(r, 0) = v(r) = q(r, 0).

Proof. The first relation in (20) is an immediate consequence of the assumption that ū solves (1).
For the remaining relations, we note from (1) that on the initial data curve Γ,

F (λ̃(r, 0)) = F (f(r), g(r), ū(f(r), g(r)),∇ū(f(r), g(r))) = 0,

f ′(r) · p̄(r, 0) + g′(r) · q̄(r, 0) = d(f ′(r),g′(r))ū(f(r), g(r)) = h′(r).

Since we have assumed

p̄(r0, 0) = ∂xū(f(r0), g(r0)) = p0, q̄(r0, 0) = ∂yū(f(r0), g(r0)) = q0,

the relations for p̄ and q̄ in (20) follow from the uniqueness of w, v in Lemma 1. �
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Lemma 6. The following identities hold for any (r, s) ∈ R′:

∂sz̄(r, s) = ∂pF (λ̃(r, s)) · p̄(r, s) + ∂qF (λ̃(r, s)) · q̄(r, s),(21)

∂sp̄(r, s) = −∂xF (λ̃(r, s))− ∂zF (λ̃(r, s)) · p̄(r, s),

∂sq̄(r, s) = −∂yF (λ̃(r, s))− ∂zF (λ̃(r, s)) · q̄(r, s).

Proof. The first relation in (21) follows immediately from the chain rule and (18):

∂sz̄(r, s) = ∂sx̄(r, s) · ∂xū(λ(r, s)) + ∂sȳ(r, s) · ∂yū(λ(r, s))

= ∂pF (λ̃(r, s)) · p̄(r, s) + ∂qF (λ̃(r, s)) · q̄(r, s).
Applying similar computations to p̄, we see that

∂sp̄(r, s) = ∂sx̄(r, s) · ∂xxū(λ(r, s)) + ∂sȳ(r, s) · ∂yxū(λ(r, s))

= ∂pF (λ̃(r, s)) · ∂xxū(λ(r, s)) + ∂qF (λ̃(r, s)) · ∂yxū(λ(r, s)).

Recalling the first equation in (17) results in the first relation in (21). The remaining relation for
q̄ in (21) can be derived using analogous methods. �

Finally, combining (18), (20), and (21), we see that λ̃ solves the same initial value problem (10)

as γ̃. Thus, by standard uniqueness results for ODEs, we see that λ̃ = γ̃. It then follows that

ū(x, y) = z̄(φ(x, y)) = z(φ(x, y)) = u(x, y), (x, y) ∈ U ,

which completes the proof of uniqueness.


