THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS

ARICK SHAO

In this short note, we solve the Cauchy, or initial value, problem for general fully nonlinear
first-order PDE. Throughout, our PDE will be defined by the function

F:R}, xR, xR —R
We also fix an open interval I C R, as well as functions f,g,h: I — R. In particular,

= A{(f(r),g9(r)) [ r eI}

is the curve on which we impose the initial data, while h represents the initial data itself.
More specifically, our goal is to solve the following Cauchy problem:

(1) F(.’E, y7 u78:l?u7 ayu) = 07 u(f(r),g(r)) = h(’f’)
Our main result is as follows:

Theorem 1. Let F' € C?(R? xR xR?), and let f,g,h € C*(I). Moreover, let rg € I and pg,qo € R
such that the following admissibility conditions are satisfied:

(2) f(r0) - po + ¢'(ro) - qo = ' (r0),

(3) F(f(ro),g(ro), h(ro),po,q0) = 0,
#(r0) ¢ (o)

@ ety b ), o) h(ro)s posan) BuF(F (o), a(ro). h(ro)sposao)] 7 °

Then, there exists a neighbourhood U C R? of (f(ro),g(r0)) such that the Cauchy problem (1) has
a unique solution u € C%(U) that satisfies the additional conditions

(5) Ozu(f(ro), 9(ro)) = po,  9yu(f(ro),g(ro)) = qo.

Remark. In the quasilinear case,

F(z,y,2,p,q) = a(z,y,2)p + b(z, y, 2)q — c(,y, 2),
one no longer needs to choose pg, qy beforehand. To see this, note that:
e The noncharacteristic condition (4) is independent of py and qo, as it reduces to

7'(r0) gro)
(6) det a(f(ro),g(ro), h(ro)) b(f(ro),g(ro), h(ro)) #

e The remaining admissibility conditions (2), (3) are also unnecessary, as these now become

f'(ro) - po + g'(ro) - qo = K (ro),
a(f(ro),g(ro), h(ro))po + b(f(r0), g(r0), h(ro))qo = c(x(ro),y(r0), 2(10)),

and (6) guarantees that the above yields exactly one possible pair (po,qo)-

Remark. Furthermore, for the quasilinear case, we need only assume a,b,c € C' and f,g,h € C'.
This yields a unique solution w € C'. Less regularity is required here than in the fully nonlinear
case, since if one proves the quasilinear analogue of Theorem 1 directly (without referring to the
fully nonlinear case), then one can avoid altogether p, q, and second derivatives of u.

1



2 ARICK SHAO

Proof of Theorem 1: Existence. The first step for proving existence is to construct a set of
similarly admissible data on T" near (f(ro),g(ro)):

Lemma 1. There exists an open interval J C I containing ro, and there exist unique w,v € C1(J)
such that (w(rg),v(ro)) = (po, o), and such that the following hold for every r € J:

(7) fi(r) - w(r) +g'(r) - v(r) = B(r),
(8) F(f(r),g(r), h(r),w(r),v(r)) =0,
Furthermore, J, w, and v can be chosen such that for each r € J,
f(r) g'(r)
) det [app(f(r),g(r),h(r),w(r),v(r)) aqF(f(r),g(r),h(r),w(T),v(T))] 7 0.

Proof. Consider the map @ : R, x R%Q — R? given by

O(r, P,Q) = (f'(r) - P+4g'(r)- Q= W(r), F(f(r),g(r),h(r), P.Q)).
Note that (2) and (3) imply that ®(rg,po,qo) = 0. Moreover, since F, f, g, h are C?, then ® is C*.
We now compute the derivative of ® with respect to P and @ at (ro, po, qo):

Dpod _ [ f'(ro) g'(ro) ]
@ rop0.a0) T 8, F(f(ro), 9(ro), hlro), po, do) - 9gF (f(r0), 9(ro), h(ro), po, o)

In particular, (4) implies Dpq®|(y po,q0) is nonsingular. By the implicit function theorem, there
exists an open interval J C I and a unique C'-function ¥ = (w,v) : J — R? such that

O(r,U(r)) = &(r,w(r),v(r)) =0, reJ.

The definition of ® now implies that (7) and (8) hold for r» € J. Finally, by reducing J if necessary,
then continuity implies that (9) also holds for r € J. O

Now that we have w and v set, we can set up the characteristic equations. Set

Y(r,s) = (x(r,s),y(r,s), 2(r, 5), p(r, 8),q4(r,5)),  A(r,s) == (2(r,5),y(r,s)),
and recall that the characteristic equations are precisely the following initial value problem:
(10) Osx(r,s) = OpF(3(r,s)),  a(r,0) = f(r),

dsy(r, s) = 5 F(’Y(T, s)),  y(r0)=
052(r,8) = OpF(Y(r,5)) - p(r; 8) + 0o F'(5(r; 8)) - q(r,8),  2(r,0) =
Osp(r,8) = =0 F(3(r,8)) — 0. F((r,5)) - p(r,s),  p(r,0)=
9sq(r,s) = =0y F(3(r, s)) = O (3(r, ) - q(r,8),  q(r,0) = v(r),
Here, s represents the parameter along the characteristic curves, while r parametrises the charac-
teristic curves corresponding to the point on I' that they intersect.

Since the right-hand sides of the equations in (10) are C''-functions of 7(r, s), and since the initial
data f,g, h,w,r are at least C', then standard ODE theory yields:

(r)
h(r),
()

Lemma 2. There erists an open rectangle R C R? about (rg,0), on which there exists a unique
Cl-function 7 : R — R? x R x R? which solves the system (10).

Since (7) and (8) represent consistency conditions for solutions, it is important to show that (7)
and (8) are propagated along the characteristic curves:

Lemma 3. The following conditions hold for each (r,s) € R:
(11) 87«56(7“, S) : p(T, 5) + 8Ty(T7 8) : Q(T’ 8) = 87»2'(7", S);
(12) F(a(r,s),y(r,s),2(r,s),p(r, s),q(r,s)) = 0.
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Proof. First, by the chain rule and then by (10),
Os[F(Y(r,8))] = 0. F(3(r,5)) - Osz(r,8) + Oy F (Y(r,5)) - Osy(r,s) + O F(F(r,s)) - Os2(r, 5)
+ 8PF(;5/(T’ S)) : 65])(7', 8) + 8(1F(;5/(T7 8)) : 8Sq(7n7 S)
=0.
Since (8) is simply that F(5(r,0)) = 0, we can conclude (12).
Next, for (11), we define
A(?", S) = 87"'%(707 S) : p(rv S) + ary(ra 3) : Q(ﬁ 8) - 87‘2(717 8)'
A direct computation using (10) and (12) yields
OsA(r, s) = 0 OpF(Y(r,5)) - p(r,s) + Opa(r, s) - [0 F(Y(r,5)) — O-F(¥(r, s)) - p(r, 5)]
+ 0,0, F(Y(r, 5)) - q(r,5) + Ory(r, s) - [=0y F(3(r, 5)) — O (3(r, ) - q(r, )]
— 0[O F(3(r,5)) - p(r, 8) + OgF (3(r, 5)) - q(r, 5)]
= _aT:E(Ta 8) ’ aﬁF(ﬁ(h 8)) + aZF(:Y(Ta 5)) : 8T:L'(Ta 3) : p(?", 5)
— Ory(r, s) - OyF (3(r, 5)) + O F(3(r, 5)) - Ory(r, 5) - q(r, )
— OpF(Y(r,5)) - Orp(r, ) = g F (Y(r,5)) - Orq(r, 5)
= =0, [F(3(r,s))] + 0-F(3(r, 5)) - A(r, 5)
= 0:F((r, s)) - A(r, s).
Since A(r,0) = 0 by (7), then either Gronwall’s inequality or solving the above directly yields
A(r,s) =0 for all (r,s) € R, which is the remaining relation (11). O

In particular, Lemma 2 implies that the projected characteristic map v defines a C'' change of
variables from (7, s) to (x,y) = (z(r, s),y(r,s)). Next, we show that v can be locally inverted:

Lemma 4. There exists an open rectangle R' C R about (ro,0) on which v|g/ is one-to-one and
DA|r: is everywhere nonsingular. Furthermore, this local inverse ¢ of vy|r/ is C1.

Proof. A direct computation using (10) shows that at (rg,0), we have

DAl oy = f'(ro) g'(ro)
(r0:0) = 10, F(f(ro), g(ro), h(ro), po, a0)  9gF(f(r0), 9(r0), h(r0), po, qo)
Since (4) implies the above is nonsingular, the inverse function theorem yields the desired ¢. [

We can now construct our solution u by
u=z06eC'U),  U=~(R),

which by the invertibility in Lemma 4 is equivalent to

(13) u(z(r, s),y(r,s)) = z(r,s),  (r,s)eR.
By the chain rule, we compute from (13) that
(14) Orz(r, s) = Op(r, s) - Opu(z(r, s),y(r, s)) + Opy(r, s) - Oyu(z(r, s), y(r, s)),

0s2(r, 8) = 0sx(r, 5) - Opu(x(r, s),y(r,s)) + Osy(r, s) - Oyu(x(r,s), y(r, s)).
Moreover, from (11) and (10), we have
(15) Orz(r, s) = Op(r, s) - p(r, s) + Opy(r, s) - q(r, ),
0sz(r, 8) = Osx(r,8) - p(r, s) + Osy(r, s) - q(r, 5).
Since D~ is invertible on R’, one then concludes that
(16) Opu(x(r, s),y(r,s)) = p(r,s),  Oyu(x(r,s),y(r, s)) = q(r,s).
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Note that (16) can be restated as
Ozu=po ¢, 8yu:q0d>.

Since the right-hand sides above are O, it follows that u € C2(U).
Finally, we show that u indeed solves (1). The initial condition holds, since by (13),

u(f(r),g(r)) = u(y(r,0)) = z(r,0) = h(r).
In addition, u solves the PDE, since by (12), (13), and (16),
F(y(r,s), u(y(r, s)), Vu(y(r, s))) = F(5(r, s)) = 0.
Since setting (r,s) = (rp,0) in (16) yields
dzu(f(ro), g(ro)) =po,  Iyulf(ro),9(ro)) = qo,

this completes the proof of existence in Theorem 1.

Proof of Theorem 1: Uniqueness. Suppose % is another C?-solution to (1) on I. Since
F(z,y,u(z,y), Vu(z,y)) =0,  (z,y) €U,
taking partial derivatives of the above yields the following relations:
(17 0= ﬁxF(x,y,ﬂ(x,y),Vﬁ(x y)) +0 F(a: y,u(z,y), Vu(z, y)) (x,y)
+ 3pF(w7y7U(I,y) (w )) U(w,y) + 3 F(I,y,U(ﬂf,y),VU(%y)) -0y u(x, y).
Next, we define the functions A = (z,%) : R’ — R? via the initial value problem

(18) 05z (r, s) = OpF(A(r, 5), u(A(r, 5)), Va(A(r, 5))),  Z(r,0) = f(r) = x(r,0),

as??(h S) = aqF()‘( Ty )7U(A( Ty ))7VU(A( 73>))7 ﬂ(r, O) - g(?“) - 9(7": O)

Indeed, standard ODE theory indicates that T and g exist, at least locally near R’ N {s = 0}, and
are O (since the right-hand sides of (18) are C''-functions of \). Given A, we next define

(19) Z(r,s) = u(\(r, s)), p(r, s) = Ozu(A(r, s)), q(r,s) = Oyu(A(r, s)).
and, for convenience, the shorthands
N(r,s) = (2(r,5),5(r, ), 2(r, 5), B(r, 5), (1, 5)).-

Lemma 5. The following relations hold:

(20) Z(r,0) = h(r) = z(r,0), p(r,0) = w(r) = p(r,0), q(r,0) = v(r) = q(r,0).

Proof. The first relation in (20) is an immediate consequence of the assumption that @ solves (1).
For the remaining relations, we note from (1) that on the initial data curve T',

F(X(r,0)) = F(f(r),g(r),ua(f(r),g(r)), Va(f(r), g(r))) = 0,
f'(r)-p(r,0) +g'(r) - q(r,0) = dprry, gy alf(r), g(r)) = B ().
Since we have assumed
P(r0,0) = 9xu(f(r0),9(r0)) =po,  q(ro,0) = dyu(f(ro),9(r0)) = qo,

the relations for p and ¢ in (20) follow from the uniqueness of w,v in Lemma 1. O
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Lemma 6. The following identities hold for any (r,s) € R':
(21) 0s2(r,8) = OpF(A(r,9)) - B(r,8) + 0, F (A(r, 9)) - 4(r, 9),
0sp(r, s) = =0 F(A(r, 5)) = . F(X(r,5)) - p(r, s),
05q(r, s) = =9, F(X(r, ) — D.F(\(r, ) - q(r, ).
Proof. The first relation in (21) follows immediately from the chain rule and (18):
0sZ(r,s) = 0sT(1, 8) - Opu(A(r, 8)) + Osy(r, 8) - Oyt(A(r, 5))
= 0, F(\(r,8)) - B, 8) + O,F(\(r, 5)) - 4(r, 5).
Applying similar computations to p, we see that
Osp(r, s) = OsI(r, 5) - OuaU(A(r, 5)) + 05y (7, 5) - Oya(A(r, )
= O, F(\(1,8)) - Ouai( (7, 8)) + g F(A(r, 8)) - Dyui(A(r, 8)).

)
Recalling the first equation in (17) results in the first relation in (21). The remaining relation for
g in (21) can be derived using analogous methods. O

Finally, combining (18), (20), and (21), we see that A solves the same initial value problem (10)
as 4. Thus, by standard uniqueness results for ODEs, we see that A = 7. It then follows that

u(z,y) = 2(o(x,y)) = 2(¢(x,y)) = uwlz,y),  (2,y) €U,

which completes the proof of uniqueness.



