THE METHOD OF CHARACTERISTICS FOR SYSTEMS AND APPLICATION
TO FULLY NONLINEAR EQUATIONS

ARICK SHAO

While the method of characteristics is used for solving general first-order partial differential
equations (with a single real-valued unknown), it fails to generalise to systems of first-order PDEs
or to higher-order PDEs. However, here we show that the method of characteristics does extend
directly to first-order systems for which all components propagate in the same direction. We then
apply this extension to develop the method of characteristics for fully nonlinear first-order PDEs.

Co-Propagating Quasilinear Systems. Let I" be a curve in R?,

= A{(f(r),9(r)) [ r €1},

where I C R is an open interval, and where the functions f,g : I — R parametrise I'. Consider the
following Cauchy problem for a quasilinear co-propagating system of PDEs,

(1) a(a,y, @) - 0pii + bz, y, @) - Oyt = &w,y,q@),  @(f(r),g(r)) = h(r).
where:

e The unknown is a function @ : Q — R%, with © being some neighbourhood of T" in R2.
e The quasilinear system is defined by the coefficients

a,b:RZ, xRISR,  &:R2, xR RY

e The initial value for # is given by the function h:I— RY
The following theorem represents the direct analogue for the system (1) of the standard method
of characteristics for a single quasilinear PDE:

Theorem 1. Suppose f,g, i_i, a,b,c € Ct, and suppose the noncharacteristic condition

f'(ro) g'(ro)
2 det - - 0
) a(f (r0).9(r0). i (ro)) b(F(ro). (r0). F(r))] 7
holds for some ro € Iy. Then, there is a neighbourhood U C R? of (f(ro),g(ro)) € T’ such that the
Cauchy problem for the system (1) has a unique C'-solution @ : U — RY.

Remark. While the existence in Theorem 1 is over a neighbourhood of a point on I, one can apply
Theorem 1 to every r € I and then patch the resulting solutions together via uniqueness to obtain
a larger solution on a neighbourhood 2 of all of T'.

Proof of Theorem 1. Consider the following characteristic equations:

(3) Osx(rys) = a(x(r,s),y(r,s), Z(r,s)), x(r,0) = f(r),
Osy(r, s) = b(x(r, s),y(r,s), Z(r, ), y(r,0) =g(r),
0s2(r, s) = c(x(r,s),y(r,s), Z(r, s)), Z(r,0) = H(T)

Here, s represents the parameter along the characteristic curves, while r parametrises the charac-
teristic curves corresponding to its starting point on I'. For convenience, we also define

’~)/(’l“, 5) = (l‘(’l“, 5)7 y(r, 8)7 5(7“, 3))7 ’Y(Ta S) = (:E(Ta 5)7 y(’l", S))
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Since the right-hand sides of (3) are C''-functions of 5(r, s), and since f, g, h are at least C', then
the standard ODE theory implies that there exists a neighbourhood D C R? of (r¢,0) on which
one has a unique C'-solution 7 : D — R? x R? of (3). (Here, 7 is C' in both r and s.)

The projected characteristics v define a C!-change of variables from (r,s) to (z,y) = v(r, s).
Moreover, a direct computation using (3) shows that at (rg,0),

Dl o) = f'(ro) g'(ro)
o0 |a(f(ro), g(ro), B(ro))  b(f (o), g(ro), Alro))]”
which is nonsingular by (2). By the inverse function theorem, there is some open rectangle
R :=J x (—s0, S0), rg €J, s9>0,

for which |R has a Cl-inverse ¢.
We can now construct our solution « by

i=ZopecCYU), U=~(R),
which can be equivalently stated as
(4) w(x(r,s),y(r,s)) = Z(r, s), (r,s) € R.
The initial condition in (1) holds for @, since by (4),
i@(f(r), g(r)) = @((r,0)) = Z(r,0) = h(r).
In addition, 4 satisfies the PDE in (1), since for (r,s) € R,
cy(r,s), u(y(r; s))) = c(vy(r, s), 2(r, s))
= 052(r, s)
= Os[((r, 5))]
= 0, U(7y(r,s)) - Osx(r, s) + Oyu(y(r, s)) - Dsy(r, 5)
= a(y(r,s),t(r,s)) - 0pti(y(r, 5)) + b(y(r, ), (r, s)) - Oyti(7(r, s)),

where we applied (3) and (4). This completes the proof of existence.
Suppose now that ¥ is another C''-solution to (1) on . Consider the initial value problem,

(5) 65i'(7', 3) = a('f(n 3)737(T7 3)777(x<7nﬂ S)7y(r7 5)))7 .f'(T’,O) = f(?“) = .%'(7’,0),
85§(T, S) - b(.f'(?“, 3)737(T7 3)777(x<7nﬂ S)7y(r7 5)))7 Q(T’,()) - g('l“) - y(r7 0)7

which has a unique C*-solution locally near R N {s = 0}. Given (Z,§), we next define

(6) zZ(r,s) = v(x(r, s),y(r, s)).
Using (5) and that ¢ satisfies (1), we see that
(7) 2(r,0) = 7(f(r),g(r)) = h(r) = 2(r,0),

0s2(r, s) = 0,0(Z(r,s),y(r,s)) - OsT(r, 5)
= 0,U(2(r, 5), y(r,s)) - a(z(r,s),y(r, s), v(x(r, s), y(r, 5)))
(

= 5(5:(7’, S), gj(r, 3)7 '17(51;(73 8)7 y(n S)))

Combining (5)-(7), we see that (zZ,y, Z) satisfies the initial value problem (3). By the uniqueness
result for ODEs, (z,y, Z) must be identical to (z,y, Z) from the proof of existence. Thus,

v(z,y) = 2(¢(x,y)) = Z(¢(z,y)) = d(z,y), (v,y) €U,

which completes the proof of uniqueness. O
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Fully Nonlinear PDE. We now turn our attention to the fully nonlinear PDE
(8) F(J), Y, u, Opu, 8yu) =0, u(f(r),g(r)) = h(’l")

Here, the objects of interest are defined as follows:

e The initial data curve I' is defined as before

D= {(f(r).g(r) €T},  fig:] >R,

where I C R is once again an open interval.
e The unknown is a function v : i/ — R, with & C R? a neighbourhood of some point on T'.
e The function F' defining the PDE has the usual form

F:R2, xR, xR} —R.

e The initial value for u is given by the function A : I — R.

The idea now is to reduce (8) to a system of quasilinear PDE of the form (1). This can be done via
a standard trick in PDEs: even if (8) itself has no particular structure, by formally differentiating
(8), we obtain quasilinear structure at the level of one derivative higher.

To see this, suppose u is a solution of (8), and consider the function

($, y) = F(x> y7 U(l’, y)7 8wu(xa y)v ayu(wa y))
Taking partial derivatives of the above and abbreviating

®(z,y) = (v,y,u(z,y), 0ru(w,y), Oyu(w,y))

yields the relations:

0=0,F(®(z,y)) - Oopulx,y) + 0,F(®(z,y)) - 2 ulz,y)
+ 0, F(®(, ))+3 F(®(z,y)) - Ozu(w,y),

0=08,F(®(x,y)) - Oopu(m,y) + 0, F(®(z,y)) - 05, u(w,y)
+ Oy F(2(z,y ))+5zF( (z,y)) - Oyu(z, y).

In particular, rearranging, we see that d,u and Jyu satisfy a co-propagating system:
(9) OpF(x,y,u, Opu, Oyu) - 0x(0pu) + Oy F (2, y, u, Opu, Oyu) - Oy(Ozu)
= —0,F(z,y,u, 0zu, Oyu) — 0, F(x,y,u, Oyu, Oyu) - Ozu,
OpF(x,y,u, Opu, Oyu) - 0x(Oyu) + 0gF (z,y, u, Opu, Oyu) - 0y(0yu)
= —0yF(x,y,u, 0yu, Oyu) — 0, F (z,y, u, Oyu, Oyu) - Oyu.

The main point is to consider d,u and dyu as additional unknowns and to solve the resulting
system. To be more precise, we define the vector-valued unknown u := (u, uy,u,), with the last
two components representing “0,u” and “Oyu”. Combining (9) with the trivial relation

apF(x’ Y, U, Uy, “y) : aru + (9qF(x, Y, U, Ug, uy) : ay“
= apF($’ Y, U, Ug, Uy) “ Uy + aqF(:L'a Y, U, Ug, uy) * Uy,

we obtain the system:
(10)  a(w,y,4) - Outi+ b(w,y, 1) - Oyt = &(w,y, @),  u(f(r),g(r)) = (h(r),w(r),v(r)),

where:

e The unknown @ = (u, uy, uy) is a R3-valued function on some neighbourhood 2 of T'.
e The initial data are given by functions h,w,v : I — R.
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e The coefficients of (10) are given by:
(11> a(x,y,ﬁ) = apF(x7y7u7u$7uy)7
b(.%‘, y7 ﬁ) = 8‘1F(x7 y7 ’U,, u$7 Uy),
OpF (2,9, U, Ug, Uy) - Uy + OgF (2, Y, Uy Uy, Uy) - Uy
Az, y, @) == | —0.F(x,y,u, ug,uy) — 0:F(2,y, u, Ug, uy) - Uz |,
—0yF(z,y,u, ug,uy) — 0, F(z,y,u, ug,uy) - uy
The derivations we have done can now be interpreted as follows:
Proposition 1. Let f,g,h € C?(I), and let w,v € C'(I). Let Q be a neighbourhood of T, and
suppose u € C?() is a solution of (8) that also satisfies
Opu(f(r),g(r)) =w(r),  Oyu(f(r),g(r)) =v(r), rel.
Then, i := (u, dyu, Oyu) is a C'-solution of (10), (11) on €.
The bigger, and more relevant, challenge is to prove the converse: that a solution of (10), (11)
yields a solution of (8). This is not entirely straightforward for the following reasons:

(1) In solving (10), we are solving the derivative of (8) and not (8). Thus, to show (8), we will
need some sort of additional constraint on the initial conditions. This can be captured by
imposing that (8) is initially satisfied on T

(2) In addition, from the point of view of (10), there is no reason a priori that u, should
correspond to J,u, and similarly for u, and d,u. In fact, this will also have to be imposed
(indirectly) as a constraint on I" and then propagated to the domain of w.

The precise statement of this is given below:

Proposition 2. Let f,g,h € C?(I), and let w,v € C(I). Also, let U C R? be a neighbourhood
of xo € I', and suppose @ := (u,uz,uy) is the Ct-solution on U of (10) obtained via Theorem 1.
Furthermore, suppose that for each r € I with (f(r),g(r)) € I NU, the following constraints hold:

(12) fi(r) - w(r) +g'(r) -v(r) = K(r),
E(f(r),g(r), h(r),w(r),v(r)) = 0.
Then, u € C*(U), and u solves (8), with the additional initial conditions
Oou(f(r),g(r)) =w(r),  Oyu(f(r),g(r)) =v(r),  (f(r),g(r)) eTNU.
Remark. Note that from the perspective of (8), one only imposes initial data for u, but not for
Vu. Indeed, one cannot impose data for Vu freely, as its values on I' are restricted precisely by the
constraints (12). However, if one can find some w(rg) and v(rg) at a single point of I' so that (12)

holds, then one can generate appropriate w(r) and v(r) locally via the implicit function theorem;
see Lemma 1 in the other notes [1] on the website.

Proof sketch of Proposition 2. Let (z,y,Z2) := (x,y, z,p, q) denote the solution to the characteristic
equations (3) corresponding to the problem (10). In particular, these equations are given by

Osa(r,s) = OpF(3(r,5)),  «(r,0) = f(r),

Osy(r,s) = g F'(Y(r,5)),  y(r,0) =g(r),

0s2(r,8) = OpF (Y(r,5)) - p(r,s) + 04 F(Y(r, s)) - q(r, 5), z(r,0) = h(r),
Isp(r,s) = =0 F((r, s)) — 0-F(3(r,s)) -p(r,s),  p(r,0) =w(r),
9sq(r, s) = =0y F(y(r,s)) — 0. F(3(r,s)) - q(r,s),  q(r,0) =v(r),

where 7 := (x,y,2,p,q). Note these are the usual characteristic equations for fully nonlinear
equations; see [1, Eq. (10)]. Recall also from the proof of Theorem 1 that

(13) Z(T‘, 5) = U(l‘(’l‘, S),y(’l”, S))a p(h 5) = ux(l'(ra S)a y(r, 5))7 Q(r7 S) = uy(aj(r, s),y(r, 5))



THE METHOD OF CHARACTERISTICS FOR SYSTEMS 5

To show that u solves (8), we must show that

(14) Oz U = Uy, Oyt = Uy,
and we must show that u satisfies the PDE,
(15) F(z,y,u(z,y), ue(z,y),uy(z,9)) =0,  (z,9) €U.

We omit the details of these derivations. However, we mention that the main step in this process
is to obtain the following propagation of constraint conditions:

(16) Orx(r,s) - p(r,s) + Opy(r,s) - q(r,s) = 0r2(r, s),
F(x(r,s),y(r,s), z(r,s),p(r,s),q(r,s)) = 0.

The proof of this is essentially the same as that of [1, Lemma 3].
Note that (15) follows from the second relation in (16). For (14), the reader is referred to the
proof of [1, Eq. (16)] (the hardest part of this is the first relation in (16)).
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