
5 Linear Wave Equations

One of the main topics of this course is the study of wave equations. Throughout, we use

the term “wave equations” to describe a broad class of PDEs, both linear and nonlinear,

whose principal part consists of the wave operator,

� := −∂2
t + ∆x := −∂2

t +

n∑

k=1

∂2
xk . (5.1)

Historically, wave equations arose in the study of vibrating strings. Since then, wave

equations have played fundamental roles in both mathematics and physics. For instance:

• Wave equations serve as prototypical examples of a wider class of PDEs known as hy-

perbolic PDEs. Solutions of hyperbolic PDEs share a number of fundamental proper-

ties, such as finite speed of propagation. Thus, understanding the basic wave equation

is an important step in studying hyperbolic PDEs in greater generality.

• Wave (and, more generally, hyperbolic) equations can be found in many fundamental

equations of physics, including the Maxwell equations of electromagnetism and the

Einstein field equations of general relativity. Therefore, in order to better grasp these

physical theories, one must understand phenomena arising from wave equations.

The study of nonlinear wave equations in general is very difficult, with many important

questions still left unanswered. However, research efforts over the past few decades have

proved vastly fruitful in situations where the nonlinear theory as a perturbation of the linear

theory. These refer to settings in which solutions of the nonlinear wave equation behave very

closely to solutions of the linearised equation. In particular, the nonlinear theory we will

eventually consider in these notes will be perturbative in this sense.

Thus, before tackling nonlinear wave equations, one must first understand the theory

of linear wave equations. This is the main topic of this chapter. More specifically, we will

discuss the initial value, or Cauchy, problem for both of the following:

1. Homogeneous linear wave equation: we look for a solution φ : Rt × Rnx → R of

�φ = 0, φ|t=0 = φ0, ∂tφ|t=0 = φ1, (5.2)

where φ0, φ1 : Rn → R comprise the initial data.

2. Inhomogeneous linear wave equation: we look for a solution φ : Rt × Rnx → R of

�φ = F , φ|t=0 = φ0, ∂tφ|t=0 = φ1, (5.3)

where φ0, φ1 are as before, and F : Rt × Rnx → R is the forcing term.

Even the linear equations (5.2) and (5.3) have a rich theory. There are multiple view-

points that one may adopt when studying these equations, which, broadly speaking, one

can separate into “physical space” and “Fourier space” methods. As we shall see, different

methods will prove useful in extracting different properties of solutions. In this chapter, we

focus on this diversity of methods, and we compare and contrast the types of information

that can be gleaned from each of these methods.

For convenience, we will adopt the following notations throughout this chapter:

• We write A .c1,...,cm B to mean A ≤ CB for some constant depending on c1, . . . , cm.

When no constants ck are given, the constant C is presumed to be universal.
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• Unless otherwise specified, we assume various spaces of functions are over Rn—for

instance, Lp := Lp(Rn) and Hs := Hs(Rn). Similar conventions hold for the corre-

sponding norms: ‖ · ‖Lp := ‖ · ‖Lp(Rn) and ‖ · ‖Hs := ‖ · ‖Hs(Rn).

• We let S := S(Rn) denote the Schwartz space of smooth, rapidly decreasing functions:

S = {f ∈ C∞(Rn) | |∇kxf(x)| ≤ (1 + |x|)−N for all k,N ≥ 0}.

• Given x0 ∈ Rn and R > 0, we define the ball and sphere about x0 of radius R in Rn:

Bx0
(R) := {x ∈ Rn | |x− x0| < R}, Sx0

(R) := {x ∈ Rn | |x− x0| = R}.

In particular, we view the unit sphere Sn−1 as the embedded sphere S0(1) ⊆ Rn.

To be precise, unless otherwise specified, integrals over Sx0
(R) will be with respect to the

volume forms induced from Rn. Sometimes, this volume form is denoted by dσ.

5.1 Physical Space Formulas

The first method we discuss is to derive explicit formulas for the solutions of the homogeneous

wave equation (5.2) in physical space. By “physical space” formulas, we mean formulas for

the solution φ itself, as functions of the Cartesian coordinates t and x (as opposed to formulas

for the Fourier transform, spatial or spacetime, of φ).

Explicit formulas for φ are nice in that they provide very direct information. For instance,

these immediately imply the all-important finite speed of propagation properties of waves (as

well as the strong Huygens principle for odd n). Moreover, from a more careful examination

of these equations, one can also derive various asymptotic decay properties of waves.

On the other hand, what is not at all apparent from these formulas are the L2-based

properties of waves, i.e., conservation of energy and other energy-type estimates. These

are not only fundamental properties, but they are also robust, in that they carry over to

the analysis of nonlinear waves as well as waves on other backgrounds besides R × Rn. In

particular, methods which are heavily reliant on explicit formulas for (5.2) will likely fail

to be useful in other more general settings of interest. As a result of this, we give only an

abridged treatment of this method for completeness; the reader is referred to Section 2.4

of [Evan2002] for more detailed developments.

Another unfortunate feature of these explicit formulas is that they differ largely depend-

ing on the dimension n. As a result, we will have to treat different dimensions separately.

5.1.1 n = 1: D’Alembert’s Formula

In this case, one can solve (5.2) using a simple change of variables. More specifically, rather

than t and x, we consider instead the null coordinates,

u = t− x, v = t+ x.

In these coordinates, the wave equation can expanded as

∂u∂vφ = −�φ = 0, (5.4)

One can then integrate (5.4) directly. This yields

∂vφ = G(v), φ =

∫ v

−u
G(s)ds+H(u), ∂uφ = G(−u) +H ′(u), (5.5)
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for some functions G and H (we integrate G from −u here for later convenience). Both G

and H in (5.4) can then be determined by the initial data (note that x = −u = v when

t = 0, and that ∂t = ∂u + ∂v); a brief computation then yields

G(s) =
1

2
φ1(s) +

1

2
φ′0(s), H(s) = φ0(−s). (5.6)

Combining (5.5) and (5.6), we arrive at d’Alembert’s formula:

Theorem 5.1 (D’Alembert’s formula). Consider the problem (5.2), with n = 1. If

φ0 ∈ C2(R) and φ1 ∈ C1(R), then the function φ : R× R→ R, defined

φ(t, x) =
1

2
[φ0(x− t) + φ0(x+ t)] +

1

2

∫ x+t

x−t
φ1(ξ)dξ, (5.7)

is C2 and solves (5.2).

Proof. By a direct computation, one can verify that φ in (5.7) indeed solves (5.2).

Remark 5.2. Note the discussion preceding the statement of Theorem 5.1 serves as a proof

of uniqueness for solutions of (5.2). Indeed, any solution of (5.2) that is regular enough so

that the above manipulations are well-defined must in fact be the function (5.7). The same

observation holds for the formulas in higher dimensions discussed below.

5.1.2 Odd n > 1: Method of Spherical Means

Unfortunately, in higher dimensions, one cannot concoct a similar change of variables to

obtain an equation that can be integrated directly. However, there is a trick which reduces

the problem, at least for odd spatial dimensions, to that of the previous case n = 1.

Roughly, the main idea is to write the wave equation in spherical coordinates,

−∂2
t φ+ ∂2

rφ+
n− 1

r
∂rφ+ r−2 /∆φ = 0, (5.8)

with /∆ denoting the Laplace operator on the (n− 1)-dimensional unit sphere Sn−1. Now, if

we integrate (5.8) over a sphere about the origin at a fixed time (i.e., over a level set of (t, r)),

then the divergence theorem eliminates the spherical Laplacian. The resulting equation for

these spherical averages of φ is then very close to the (1 + 1)-dimensional wave equation, for

which we can solve using d’Alembert’s formula. Moreover, this process can be repeated for

spheres centered around any point x ∈ Rn, not just the origin.

Because the main step of the process is this averaging of φ over spheres, this trick is

usually referred to as the method of spherical means. Here, we briefly summarise the process

in the case n = 3, for which the formulas remain relatively simple. We only state without

derivation the result for higher (odd) dimensions.

For any point (t, x) ∈ R× R3 and r ∈ R, we define

M(t, x, r) :=
1

4π

∫

S2
φ(t, x+ ry)dσ(y),

where dσ denotes the surface measure of the unit sphere S2. In particular, M(t, x, r) rep-

resents the mean of φ over a sphere about (t, x) of radius |r|. Furthermore, one computes

(noting that the spherical integral kills the spherical Laplacian) that

−∂2
t (rM) + ∂2

r (rM) = 0,
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Thus, rM satisfies the (1+1)-dimensional wave equation in t and r (for any fixed x ∈ R3),

hence rM can be expressed explicitly using d’Alembert’s formula. Also, by definition,

φ(t, x) := lim
r→0

M(t, x, r).

Combining all the above, we arrive at Kirchhoff’s formula:

Theorem 5.3 (Kirchhoff’s formula). Consider the problem (5.2), with n = 3. Assum-

ing φ0 ∈ C3(R3) and φ1 ∈ C2(R3), then the function φ : R× R3 → R, defined

φ(t, x) =
1

4π

∫

S2
[φ0(x+ ty) + ty · ∇xφ0(x+ ty) + t · φ1(x+ ty)]dσ(y) (5.9)

=
1

4πt2

∫

Sx(|t|)
[φ0(y) + (y − x) · ∇yφ0(y) + t · φ1(y)]dσ(y).

is C2 and solves (5.2).

Again, this can be proved by directly verifying that (5.9) satisfies (5.2).

For odd n > 3, an explicit solution can be derived by a similar process via spherical

means. For brevity, we merely state the result here:

Theorem 5.4. Consider the problem (5.2), with n > 1 being odd. If φ0 ∈ C(n+3)/2(R3)

and φ1 ∈ C(n+1)/2(R3), then the function φ : R× Rn → R, defined

φ(t, x) =
1

γn
∂t(t

−1∂t)
n−3
2

[
t−1

∫

Sx(|t|)
φ0

]
+

1

γn
(t−1∂t)

n−3
2

[
t−1

∫

Sx(|t|)
φ1

]
, (5.10)

is C2 and solves (5.2), where γn := [1 · 3 · · · · · (n− 2)] · |Sn−1|.

5.1.3 Even n: Method of Descent

For even dimensions, the main idea is to convert this to an odd-dimensional problem by

adding a “dummy” variable xn+1 ∈ R, with both φ0 and φ1 independent of this xn+1.

Thinking of this as an (n+ 1)-dimensional problem, we can now apply the previous results

of Theorems 5.3 and 5.4. This is known as the method of descent.

Again, we summarise this process only for n = 2, for which the formulas are relatively

simple. We now add a dummy variable x3 ∈ R, and we define

φ̃0(t, x, x3) := φ0(t, x), φ̃1(t, x, x3) := φ1(t, x).

Letting x′ = (x, x3), then by (5.9), we see that the solution to (5.2), in the case n = 3 with

initial data φ̃0 and φ̃1, is given by

φ̃(t, x′) =
1

4π

∫

S2
[φ̃0(x′ + ty′) + ty′ · ∇x′ φ̃0(x′ + ty′) + t · φ̃1(x′ + ty′)]dσ(y′). (5.11)

Now, the integrals over the hemispheres x3 > 0 and x3 < 0 of S2 can be written as

weighted integrals of the unit disk in R2. Indeed, one can compute that for any f : S2 → R,

∫

S2∩{x3>0}
f(y′)dσ(y′) =

∫

B0(1)

f(y1, y2,
√

1− |y|2)√
1− |y|2

dy, (5.12)

∫

S2∩{x3<0}
f(y′)dσ(y′) =

∫

B0(1)

f(y1, y2,−
√

1− |y|2)√
1− |y|2

dy. (5.13)
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Thus, combining (5.11) and (5.12), and recalling the definitions of φ̃0 and φ̃1, we obtain

φ̃(t, x′) =
1

2π

∫

B0(1)

φ0(x+ ty) + ty · ∇xφ0(x+ ty) + t · φ1(x+ ty)√
1− |y|2

dy. (5.14)

Note that φ̃ is in fact independent of x3. Thus, defining

φ(t, x) := φ̃(t, x′),

it follows that φ solves (5.2), for n = 2 and for initial data φ0 and φ1:

Theorem 5.5 (Method of descent). Consider the problem (5.2), in the case n = 2. If

φ0 ∈ C3(R2) and φ1 ∈ C2(R2), then the function φ : R× R2 → R, defined

φ(t, x) =
1

2π

∫

B0(1)

φ0(x+ ty) + ty · ∇xφ0(x+ ty) + t · φ1(x+ ty)√
1− |y|2

dy (5.15)

=
1

2πt

∫

Bx(|t|)

φ0(y) + (y − x) · ∇yφ0(y) + t · φ1(y)√
t2 − |y − x|2

dy, (5.16)

is C2 and solves (5.2).

Again, one can verify that (5.15) is a solution of (5.2) through direct computation.

Finally, we state without proof the formulas for the solution of (5.2) in all even dimensions:

Theorem 5.6. Consider the problem (5.2), with n being even. If φ0 ∈ C(n+4)/2(Rn) and

φ1 ∈ C(n+2)/2(Rn), then the function φ : R× Rn → R, defined

φ(t, x) =
1

γn
∂t(t

−1∂t)
n−2
2

[∫

Bx(|t|)

φ0(y)√
t2 − |y − x|2

dy

]
(5.17)

+
1

γn
(t−1∂t)

n−2
2

[∫

Bx(|t|)

φ1(y)√
t2 − |y − x|2

dy

]
,

is C2 and solves (5.2), and where γn := (2 · 4 · · · · · n) · |B0(1)|.

5.1.4 Finite Speed of Propagation

A fundamental property of waves that can be immediately seen from the physical space

formulas (5.7), (5.10), and (5.17) is finite speed of propagation. If one alters the initial data

φ0, φ1 in a small region, then that change travels in the solution φ at a finite speed, so that

φ will not change at any point “far away” from where φ0 and φ1 were changed.

To be more illustrative, suppose we first consider trivial initial data, φ0 = φ1 ≡ 0. Then,

the solution φ to (5.2) is simply the zero function, φ(t, x) = 0. Next, suppose we alter φ0 and

φ1, so that they are now nonzero on the unit ball |x| < 1. Then, applying the appropriate

physical space formula, we see that at time t = 1, the solution φ(1, x) can be nonzero only

when |x| < 2; this is because φ(1, x) is expressed as an integral of φ0 and φ1 on a ball or

sphere of radius 1 about x. More generally, φ(t, x), at a time t, can be nonzero only when

|x| < 1 + |t|. Thus, any change to φ0 and φ1 propagates at most at finite speed 1.

We give more precise statements of this below:

Theorem 5.7 (Finite speed of propagation). Suppose φ is a solution of (5.2), with φ0

and φ1 satisfying the assumptions of Theorem 5.1, 5.4, or 5.6, depending on n. In addition,

we fix a point x0 ∈ Rn and a radius R > 0.
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• If the supports of φ0 and φ1 are contained in the ball Bx0
(R), then for any t ∈ R, the

support of φ(t, ·) is contained in the ball Bx0
(R+ |t|).

• If φ0 and φ1 vanish on Bx0
(R), then φ vanishes on the cone

C = {(t, x) ∈ (−R,R)× Rn | |x− x0| ≤ R− |t|}.

Proof. These can be directly observed using (5.7), (5.10), and (5.17).

If n is odd, then we have an even stronger property. Indeed, from (5.9) and (5.10), we

see that at time t > 0, the formula for φ(t, x) is expressed as an integral of φ0 and φ1 on

a sphere of radius t about x. In other words, a change in φ0 and φ1 at a point x0 ∈ Rn

propagates entirely along the cone C = {(t, x) ∈ R × Rn | |t| = |x − x0|}. This is known in

physics literature as the strong Huygens principle.

Theorem 5.8 (Strong Huygens principle). Suppose φ solves (5.2), with n odd. Then,

if the first (n− 1)/2 derivatives of φ0 and the first (n− 3)/2 derivatives of φ1 vanish on the

sphere Sx0
(|t|), where x ∈ Rn and t ∈ R, then φ(t, x0) = 0.

5.2 Fourier Space Formulas

We now discuss representation formulas for the solutions of (5.2) in Fourier space, that is,

for the spatial Fourier transform of φ. In contrast to the physical space formulas in the

previous subsection, the Fourier space formulas have the same format in all dimensions.

This is an advantage in that one can use these formulas in the same way independently of

dimension. On the other hand, this also means the Fourier representation hides many of the

important qualititative differences among the formulas (5.7), (5.9), (5.10), (5.15), (5.17).

Suppose now that φ0 and φ1 are “nice enough” functions such that their Fourier trans-

forms φ̂i : Rn → C exist, and that after making “reasonable” transformations to φ̂0 and φ̂1,

their inverse Fourier transforms also still exist.23 Suppose φ solves (5.2), and let φ̂ denote

its spatial Fourier transform, i.e., the Fourier transform of φ of only the x-variables:

φ̂ : Rt × Rnξ → C, φ̂(t, ξ) =
1

(2π)
n
2

∫

Rn
e−ix·ξφ(t, x)dx.

In particular, taking the spatial Fourier transform of (5.2) yields

−∂2
t φ̂(t, ξ)− |ξ|2φ̂(t, ξ) ≡ 0, φ̂|t=0 = φ̂0, ∂tφ̂|t=0 = φ̂1.

For each ξ ∈ Rn, the above is a second-order ODE in t, which can be solved explicitly:

φ̂(t, ξ) = cos(t|ξ|)φ̂0(ξ) +
sin(t|ξ|)
|ξ| φ̂1(ξ). (5.18)

This is the general representation formula for φ in Fourier space. Taking an inverse Fourier

transform of (5.18) (assuming it exists) yields a formula for the solution φ itself. In partic-

ular, this inverse Fourier transform exists when both φ0 and φ1 lie in L2.

For concise notation, one usually denotes this formula for φ via the operators

f 7→ cos(t
√
−∆)f = F−1[cos(t|ξ|)Ff ], f 7→ sin(t

√
−∆)√
−∆

f = F−1

[
sin(t|ξ|)
|ξ| Ff

]
,

corresponding to multiplication by cos(t|ξ|) and |ξ|−1 sin(t|ξ|) in Fourier space.24 Thus, from

(5.18) and the above considerations, we obtain:

23To sidestep various technical issues, we avoid the topic of distributional solutions.
24There are spectral-theoretic justifications for such notations, but we will not discuss these here.
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Theorem 5.9. Consider the problem (5.2), for general n, and suppose φ0, φ1 ∈ L2. Then,

the solution φ to (5.2) can be expressed as

φ(t) = cos(t
√
−∆)φ0 +

sin(t
√
−∆)√
−∆

φ1. (5.19)

Remark 5.10. Note that in general, the right-hand side of (5.19) may not be twice dif-

ferentiable in the classical sense. Thus, one must address what is meant by (5.19) being a

“solution”. While there are multiple ways to characterise such “weak solutions”, we note

here that (5.19) does solve (5.2) in the sense of distributions.

As mentioned before, the physical and Fourier space formulas highlight rather different

aspects of waves. For instance, the finite speed of propagation properties that were immedi-

ate from the physical space formulas cannot be readily seen from (5.19). On the other hand,

it is easy to obtain L2-type estimates for φ from (5.19) via Plancherel’s theorem, while such

estimates are not at all apparent from the physical space formulas:

Theorem 5.11. Suppose φ0 ∈ Hs+1 and φ1 ∈ Hs for some s ≥ 0. Then, for any t ∈ R,

the solution φ to (5.2) satisfies the following estimate:

‖∇xφ(t)‖Hs + ‖∂tφ(t)‖Hs . ‖∇xφ0‖Hs + ‖φ1‖Hs . (5.20)

Proof. This follows from Plancherel’s theorem and the definition of Hs-norms:25

‖∇xφ(t)‖Hs ≤ ‖ cos(t|ξ|) · (1 + |ξ|2)
s
2 · ξφ0‖L2 + ‖ sin(t|ξ|) · |ξ|−1ξ · (1 + |ξ|2)

s
2 · φ1‖Hs

≤ ‖(1 + |ξ|2)
s
2 · ξφ0‖L2 + ‖(1 + |ξ|2)

s
2 · φ1‖Hs

= ‖∇xφ0‖Hs + ‖φ1‖Hs .

Similarly, for ∂tφ, we have

‖∂tφ(t)‖Hs ≤ ‖ sin(t|ξ|) · (1 + |ξ|2)
s
2 · |ξ|φ0‖L2 + ‖ cos(t|ξ|) · (1 + |ξ|2)

s
2 · φ1‖Hs

≤ ‖∇xφ0‖Hs + ‖φ1‖Hs .

In particular, theHs-regularity of (first derivatives of) solutions of (5.2) is propagated. In

other words, as long as the hypotheses of Theorem 5.11 are satisfied, the curves t 7→ ∇xφ(t)

and t 7→ ∂tφ(t) lie in the (infinite-dimensional) space Hs.

Remark 5.12. From either the fundamental theorem of calculus or from Fourier space

estimates, one can show that under the hypotheses of Theorem 5.11,

‖φ(t)‖Hs . 1 + |t|, t ∈ R.

Moreover, this is nearly optimal, one can construct solutions φ of (5.2) such that ‖φ(t)‖L2

grows faster than |t|1−ε for any ε > 0; see Section 4.5 in [Selb2001].

Remark 5.13. Alternatively, one can rewrite the Fourier space formula (5.18) as

φ̂(t, ξ) =
1

2
eit|ξ|[φ̂0(ξ)− i|ξ|−1φ̂1(ξ)] +

1

2
e−it|ξ|[φ̂0(ξ) + i|ξ|−1φ̂1(ξ)].

This leads to the half-wave decomposition of φ:

φ(t) =
1

2
eit
√−∆xφ− +

1

2
e−it

√−∆xφ+, φ± := φ0 ± i(−∆x)−
1
2φ1. (5.21)

25Here, for generality and for convenience, we use the Fourier definition of Hs-norms.
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In particular, this recasts (5.2) as solving the following first-order half-wave equations:

∂tβ ±
√
−∆xβ = 0, β|t=0 = β0. (5.22)

This half-wave representation is often better suited for harmonic analysis techniques.

5.3 Duhamel’s Principle

We now turn our attention to the general inhomogeneous wave equation, (5.3). As was

mentioned in Chapter 1, one could construct a solution of inhomogeneous linear ODE from

a solution of the corresponding homogeneous ODE via Duhamel’s principle, and this idea

extends to PDEs as well. However, Duhamel’s principle, as discussed, applied only to first-

order equations, while the wave equation is of course second-order.

The trick for overcoming this issue to adopt ψ := ∂tφ as a second unknown. By consid-

ering (φ, ψ) as the unknowns, then (5.3) can be written as a first-order system:

∂t

[
φ

ψ

]
=

[
ψ

−∆xφ− F

]
=

[
0 I

−∆x 0

][
φ

ψ

]
−
[

0

F

]
,

[
φ

ψ

]∣∣∣∣∣
t=0

=

[
φ0

φ1

]
. (5.23)

Remark 5.14. Perhaps some clarification is needed for the term “first-order”. In (5.23),

we adopt the ODE-inspired perspective of treating the solution (φ, ψ) to the wave equation

as a curve in an infinite-dimensional space of (pairs of) functions Rn → R. In this viewpoint,

the Laplacian ∆x is thought of as a linear operator on this infinite-dimensional space.

Let L denote the linear propagator for the above system (5.23), that is,26

L(t)

[
φ0

φ1

]
:=

[
φ̃(t)

ψ̃(t)

]
, t ∈ R

where φ̃ and ψ̃ solve (5.23), with F ≡ 0. Then, from (5.19) and its t-dervative, we have

L(t)

[
φ0

φ1

]
=

[
cos(t

√
−∆)φ0 + sin(t

√
−∆)√
−∆

φ1

sin(t
√
−∆)
√
−∆φ0 + cos(t

√
−∆)φ1

]
. (5.24)

Formally, one can repeat the derivation of Proposition 1.14, assuming the integrating factors

process extends to our setting. This yields that the solution (φ, ψ) of (5.23) satisfies
[
φ

ψ

]
= L(t)

[
φ0

φ1

]
−
∫ t

0

L(t− s)
[

0

F (s)

]
ds.

Finally, recalling the formula (5.24) for L(t) and restricting our attention only to the

first component (the solution φ of the original wave equation), we obtain:

Theorem 5.15 (Duhamel’s principle (Fourier)). Consider the problem (5.3). Let

φ0, φ1 ∈ L2, and assume F ∈ L∞(Rt;L2(Rnx)). Then, the solution φ can be written as

φ(t) = cos(t
√
−∆)φ0 +

sin(t
√
−∆)√
−∆

φ1 −
∫ t

0

sin((t− s)
√
−∆)√

−∆
F (s)ds. (5.25)

Furthermore, if ∇xφ0 ∈ Hs, φ1 ∈ Hs, and F ∈ L∞(R;Hs), then for any t ∈ R,

‖∇xφ(t)‖Hs + ‖∂tφ(t)‖Hs . ‖∇xφ0‖Hs + ‖φ1‖Hs +

∣∣∣∣
∫ t

0

‖F (τ)‖Hsdτ
∣∣∣∣ . (5.26)

26For now, one simply assume that φ0, φ1 ∈ S for convenience.
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Proof. Again, recalling the definitions of the operators in (5.25) in Fourier space, one can

differentiate (5.25) and check directly that it satisfies (5.3). The estimate (5.26) follows from

Plancherel’s theorem in the same manner as (5.20).

One can also derive analogues of Duhamel’s principle using the physical space formulas.

Consider, for concreteness, the case n = 3 (the other dimensions can be handled analo-

gously). Let Lφ denote the projection of the linear propagator to its first (φ-)component.

Then, assuming φ0 and φ1 to be sufficiently differentiable, L1(t)(φ0, φ1) is given by the

right-hand side of (5.9). Duhamel’s formula then yields the following:

Theorem 5.16 (Duhamel’s principle (physical)). Consider the problem (5.3), with

n = 3. If φ0 ∈ C3(R3), φ1 ∈ C2(R3), and F ∈ C2(R× R3), then the function

φ(t, x) =
1

4πt2

∫

Sx(|t|)
[φ0(y) + (y − x) · ∇yφ0(y) + t · φ1(y)]dσ(y) (5.27)

+
1

4π

∫ t

0

∫

Sx(|s|)

F (t− s, y)

s
dσ(y)ds

is C2 and satisfies (5.3). Moreover, analogous formulas hold in other dimensions.

5.4 The Energy Identity

By the “energy” of a wave φ, one generally refers to L2-type norms for first derivatives of

φ. Recall that (5.26) already provides such an energy estimate.27 Below, we will show how

physical space methods can be used to achieve more precise energy identities.

Furthermore, physical space methods will also allow us to localise energy identities and

estimates within spacetime cones. This property is closely connected to finite speed of

propagation and hence is far less apparent from Fourier space techniques.

To state the general local energy identity, we need a few more notations. Given x0 ∈ Rn:

• We denote by ∂r(x0) the radial derivative centred about x0,

∂r(x0) :=
x− x0

|x− x0|
· ∇x.

• We denote by /∇y(x0) the angular gradients on the spheres Sx0
(R), R > 0.

With the above in mind, the local energy identity can now be stated as follows:

Theorem 5.17 (Local energy identity). Let φ be a C2-solution of (5.3), and suppose

F is continuous. Given x0 ∈ Rn and R > 0, we define the local energy of φ by

Eφ,x0,R(t) :=
1

2

∫

Bx0 (R−t)
[|∂tφ(t, x)|2 + |∇xφ(t, x)|2]dx, 0 ≤ t < R, (5.28)

Then, for any 0 ≤ t1 < t2 < R, the following local energy identity holds:

Eφ,x0,R(t2) + Fφ,x0,R(t1, t2) = Eφ,x0,R(t1)−
∫ t2

t1

∫

Bx0 (R−t)
F (t, x)∂tφ(t, x)dxdt, (5.29)

where Fφ,x0,R is the corresponding local energy flux,

Fφ,x0,R(t1, t2) =
1

2

∫ t2

t1

∫

Sx0 (R−t)
[|(∂t− ∂r(x0))φ(t, y)|2 + | /∇y(x0)φ(t, y)|2]dσ(y)dt. (5.30)

27Taking s > 0 in (5.26) yields higher-order energy estimates.
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Proof. Writing the integral in Eφ,x0,R(t) in polar coordinates as

Eφ,x0,R(t) :=
1

2

∫ R−t

0

∫

Sx0 (r)

[|∂tφ(t, y)|2 + |∇xφ(t, y)|2]dσ(y)dr,

we derive that

E ′φ,x0,R(t) =

∫

Bx0 (R−t)
[∂2
t φ(t, x)∂tφ(t, x) + ∂t∇xφ(t, x) · ∇xφ(t, x)]dx

− 1

2

∫

Sx0 (R−t)
[|∂tφ(t, y)|2 + |∇xφ(t, y)|2]dσ(y)

= I1 + I2.

The term I1 can be further expanded using the wave equation (5.2):

I1 =

∫

Bx0 (R−t)
[−F (t, x)∂tφ(t, x) + ∆xφ(t, x)∂tφ(t, x) + ∂t∇xφ(t, x) · ∇xφ(t, x)]dx

= I1,1 + I1,2 + I1,3.

Integrating I1,2 by parts yields

I1,2 = −I1,3 +

∫

Sx0 (R−t)
∂r(x0)φ(t, x)∂tφ(t, x).

Thus, combining the above results in the identity

E ′φ,x0,R(t) = −1

2

∫

Sx0 (R−t)
[|∂tφ(t, y)|2 + |∇xφ(t, y)|2 − 2∂r(x0)φ(t, x)∂tφ(t, x)]dσ(y)

−
∫

Bx0 (R−t)
F (t, x)∂tφ(t, x)dx.

Recall now that the gradient of φ can be decomposed into its radial and angular parts,

with respect to x0. In terms of lengths, we have

|∇xφ|2 = |∂r(x0)φ|2 + | /∇x(x0)φ|2.

As a result of some algebra, our identity for E ′φ,x0,R
becomes

E ′φ,x0,R(t) = −1

2

∫

Sx0 (R−t)
[|∂tφ(t, y)− ∂r(x0)φ(t, y)|2 + | /∇x(x0)φ(t, y)|2]dσ(y)

−
∫

Bx0 (R−t)
F (t, x)∂tφ(t, x)dx.

Integrating the above in t from t1 to t2 results in (5.29).

Remark 5.18. Since φ̃(t) := φ(−t) also satsifies a wave equation, then under the assump-

tions of Theorem 5.17, an analogous result holds for negative times −R < t ≤ 0.

In the homogeneous case, one can use to Theorem 5.17 to almost immediately recover

finite speed of propagation (though not the strong Huygens principle):

Corollary 5.19 (Finite speed of propagation). Suppose φ is a C2-solution of (5.2),

and let x0 ∈ Rn and R > 0. If φ0 and φ1 vanish on Bx0(R), then φ vanishes on

C = {(t, x) ∈ (−R,R)× Rn | |x− x0| ≤ R− |t|}.
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Proof. Noting that the flux (5.30) is always nonnegative, then (5.29) implies

Eφ,x0,R(t) ≤ Eφ,x0,R(0) = 0, 0 ≤ t < R,

where the initial energy vanishes due to our assumptions. Since these Eφ,x0,R(t) vanish, then

both ∂tφ and ∇xφ vanish on C+ := {(t, x) ∈ C | t ≥ 0}. Since φ(0) vanishes on Bx0
(R), then

the fundamental theorem of calculus implies φ also vanishes on C+. A similar conclusion

can be reached for negative times using time symmmetry.

Thus far, we have constructed, via both physical and Fourier space methods, solutions

to (5.2) and (5.3). However, we have devoted only cursory attention to is the uniqueness

of solutions to (5.2). Suppose φ and φ̃ both solve (5.3) (with the same F , φ0, φ1). Then,

φ− φ̃ solves (5.2), with zero initial data. Thus, applying Corollary 5.19 with various x0 and

R yields that φ = φ̃. As a result, we have shown:

Corollary 5.20 (Uniqueness). If φ and φ̃ are C2-solutions to (5.3), then φ = φ̃.

Remark 5.21. In fact, Holmgren’s theorem implies that solutions to (5.2) (and also to

(5.3) for real-analytic F ) are unique in the much larger class of distributions.28

5.4.1 Global Energy Identities

One can also use physical space methods to derive global energy bounds similar to (5.26), as

long as there is sufficiently fast decay in spatial directions. This approach has an additional

advantage in that one obtains an energy identity rather than just an estimate.

Theorem 5.22 (Energy identity). Let φ be a C2-solution of (5.3), and suppose for any

t ∈ R that ∇xφ(t), ∂tφ(t), and F (t) decay rapidly.29 Define the energy of φ by

Eφ(t) :=
1

2

∫

Rn
[|∂tφ(t, x)|2 + |∇xφ(t, x)|2]dx, t ∈ R. (5.31)

Then, for any t1, t2 ∈ R with t1 < t2, the following energy identity holds:

Eφ(t2) = Eφ(t1)−
∫ t2

t1

∫

Rn
F∂tφ · dxdt (5.32)

Proof. This follows by taking R ↗ ∞ in (5.29) and by noticing that the local energy flux

(5.30) vanishes in this limit due to our decay assumptions.

Remark 5.23. From (5.32), one can recover the energy estimate (5.26) with s = 0. Note

that one also obtains higher-order energy identities from (5.32), since the wave operator

commutes with 〈−∆x〉s := (1 + | −∆x|)
s
2 , and hence30

�(〈−∆x〉sφ) = 〈−∆x〉sF .

Moreover, in the homogeneous case, one captures an even stronger statement:

28Holmgren’s theorem is a classical result which states that for any linear PDE with analytic coefficients,

solutions of the noncharacteristic Cauchy problem are unique in the class of distributions.
29More specifically, |∂tφ(t)|+ |∇xφ(t)|+ |F (t)| . (1 + |x|)−N for any N > 0. Note that such assumptions

for φ are not unreasonable, since Corollary 5.19 implies this holds for compactly supported initial data.
30Of course, one must assume additional differentiability for φ if s > 0.
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Corollary 5.24 (Conservation of energy). Let φ be a C2-solution of (5.2), and suppose

for any t ∈ R that ∇xφ(t), ∂tφ(t), and F (t) decay rapidly. Then, for any t ∈ R,

Eφ(t) = Eφ(0) =
1

2

∫

Rn
[|φ1(x)|2 + |∇xφ0(x)|2]dx. (5.33)

5.4.2 Some Remarks on Regularity

Thus far, our energy identities have required that φ is at least C2, which from our (physical

space) representation formulas may necessitate even more regularity for φ0 and φ1. One can

hence ask whether these results still apply when φ is less smooth.

In fact, one can recover this local energy theory (and, by extension, finite speed of

propagation and uniqueness) for rough solutions φ of (5.2), arising from initial data φ0 ∈ H1
loc

and φ1 ∈ L2
loc. (For solutions of (5.3), one also requires some integrability assumptions for

F .) In general, this is done by approximating φ0 and φ1 by smooth functions and applying

the existing theory to the solutions arising from the regularised data. Then, by a limiting

argument, one can transfer properties for the regularised solutions to φ itself.

The remainder of these notes will deal mostly with highly regular functions, for which

all the methods we developed will apply. As a result, we avoid discussing these regularity

issues here, as they can be rather technical and can obscure many of the main ideas.

5.5 Dispersion of Free Waves

While we have shown energy conservation for solutions φ of the homogeneous wave equation

(5.2), we have not yet discussed how solutions decay in time. On one hand, the total energy

of φ(t), given by the L2-norms of ∂tφ(t) and ∇xφ(t), does not change in t. However, what

happens over large times is that the wave will propagate further outward (though at a finite

speed), and the profile of φ(t) disperses over a larger area in space. Correspondingly, the

magnitude of |φ(t)| will become smaller as the profile spreads out further.

A pertinent question is to ask what is the generic rate of decay of |φ(t)| as |t| ↗ ∞. The

main result, which is often referred to as a dispersive estimate, is the following:

Theorem 5.25 (Dispersive estimate). Suppose φ solves (5.2), with φ0, φ1 ∈ S. Then,

‖φ(t)‖L∞ ≤ Ct−
n−1
2 , (5.34)

where the constant C depends on various properties of φ0 and φ1.

Remark 5.26. The representation formulas (5.7), (5.10), and (5.17) demonstrate that

(5.34) is false if φ0 and φ1 do not decay sufficiently quickly.

One traditional method to establish Theorem 5.25 is by using harmonic analysis methods.

Recalling the half-wave decomposition (5.21), Theorem 5.25 reduces to proving dispersion

estimates for the half-wave propagators e±it
√−∆x . These can be shown to be closely con-

nected to decay properties for the Fourier transform of the surface measure of Sn−1.

There also exist more recent physical space methods for deriving (5.34). Very roughly,

these are based primarily on establishing weighted integral estimates for ∂tφ and ∂xφ over

certain spacetime regions. While these methods require more regularity from φ0 and φ1,

they have the additional advantage of being applicable to wave equations on backgrounds

that are not R× Rn; see the lecture notes of M. Dafermos and I. Rodnianski, [Dafe2013].
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[Lions1991] Pierre-Louis Lions and Benôıt Perthame. Propagation of moments and

regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math.,

105(1):415–430, dec 1991.

[Pfaffelmoser1992] K Pfaffelmoser. Global classical solutions of the Vlasov-Poisson system

in three dimensions for general initial data. J. Differ. Equ., 95(2):281–303, feb

1992.

79



[Rein2007] Gerhard Rein. Collisionless Kinetic Equations from Astrophysics–The

Vlasov-Poisson System. Handb. Differ. Equations Evol. Equations, 3:383–476,

2007.

[Schaeffer1991] Jack W. Schaeffer. Global existence of smooth solutions to the vlasov

poisson system in three dimensions. Commun. Partial Differ. Equations,

16(8-9):1313–1335, jan 1991.

[Selb2001] S. Selberg. Lecture notes. Math 632, PDE.

http://www.math.ntnu.no/∼sselberg/HopkinsLectures.pdf.

[Sogg2008] C. Sogge. Lectures on Nonlinear Wave Equations. International Press, 2008.

[Tao2006] T. Tao. Nonlinear Dispersive Equations: Local and Global Analysis. American

Mathematical Society, 2006.

[Ukai1978] Seiji Ukai and Takayoshi Okabe. On classical solutions in the large in time of

two-dimensional Vlasov’s equation. Osaka J. Math., 15:245–261, 1978.

80


