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In this short note, we give a detailed proof of the C1-dependence on initial data for a family of
solutions of a C1-system of ODEs. More specifically, we consider the following system,

(1) x′ = f(t, x),

where:

• t ∈ R is the independent variable.
• x : I → Rn is the unknown, with I ⊆ R begin some interval containing 0.
• The function f : Rt × Rn

x → Rn defines the system of ODEs.

The main statement we wish to prove is the following:

Theorem 1. Let J ⊆ R be a nonempty closed interval, and suppose x : Jr × [0, T ]t → Rn is a
family of solutions—parametrised by r ∈ J—of (1), that is,

(2) ∂tx(r, t) = f(t, x(r, t)), x(r, 0) = x0(r),

with x0 : J → Rn being the corresponding family of initial data.
If f and x0 are both C1, then the solution x is also C1 (in both r and t).

Remark. Since f is C1, then f is automatically both locally bounded and locally Lipschitz in x.
By the standard existence and uniqueness result, each individual solution x(r, ·) exists uniquely and
is C1 in t. Thus, the remaining task is to prove the same C1-regularity in r.

C0-Dependence on Data. As warm-up, we first prove C0-dependence of the solution x on r. For
this, we fix throughout r, r0 ∈ J , and we set1

y(t) := y(r, r0; t) := x(r, t)− x(r0, t).

Differentiating y and recalling (2) results in the identity

(3) y′(t) = f(t, x(r, t))− f(t, x(r0, t)).

Integrating (3) and recalling y(0) = x0(r)− x0(r0), we see that

|y(t)| ≤ |x0(r)− x0(r0)|+
∫ t

0
|f(s, x(r, s))− f(s, x(r0, s))|ds.

Since the domain of x is compact, then by the local Lipschitz properties of f (due to f being C1),

(4) |y(t)| ≤ |x0(r)− x0(r0)|+ L

∫ t

0
|x(r, s)− x(r0, s)|ds = |x0(r)− x0(r0)|+ L

∫ t

0
|y(s)|ds.

Applying Gronwall’s inequality to (4) yields

|x(r, t)− x(r0, t)| = |y(t)| ≤ |x0(r)− x0(r0)|etL.

In particular, as r → r0, then x(r, t)→ x(r0, t), so that x is indeed continuous in r for each t.

1For simplicity of notation, we suppress the dependence of y on r and r0.
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r-Differentiability of x. The next step is to show that x is differentiable in the r-direction and
to determine this derivative. The main idea is to note from (2) that

∂t

[
x(r, t)− x(r0, t)

r − r0

]
=

f(t, x(r, t))− f(t, x(r0, t))

r − r0

Taking a formal (and completely unrigorous) limit of the above as r → r0, we can guess that if ∂rx
indeed exists, then it should satisfy the following system of ODEs:2

∂t(∂rx)(r0, t) =
d

dr
f(t, x(r, t))

∣∣∣∣
r=r0

= ∇xf(t, x(r0, t)) · ∂rx(r0, t).

To be rigorous, we now work backwards: let A denote the solution of the initial value problem3

(5) ∂tA(t) = ∇xf(t, x(r0, t)) ·A(t), A(0) = x′0(r0).

(Since the system is linear, and since ∇xf(t, x(r0, t)) is well-defined, A(t) is guaranteed to exist on
all of [0, T ].) Consider now the function B : [0, T ]→ Rn given by

(6) B(t) :=
x(r, t)− x(r0, t)

r − r0
−A(t).

A direct computation using (5), (6), and the fundamental theorem of calculus yields

B′(t) =
1

r − r0

∫ 1

0

d

ds
[f(t, s · x(r, t) + (1− s) · x(r0, t))]ds−∇xf(t, x(r0, t)) ·A(t)

=

∫ 1

0
∇xf(t, s · x(r, t) + (1− s) · x(r0, t))ds ·

x(r, t)− x(r0, t)

r − r0
−∇xf(t, x(r0, t)) ·A(t).

A bit of algebraic manipulation then reveals that

(7) B′(t) = C1(t) ·B(t) + C2(t) ·A(t),

where

C1(t) =

∫ 1

0
∇xf(t, s · x(r, t) + (1− s) · x(r0, t))ds,(8)

C2(t) =

∫ 1

0
[∇xf(t, s · x(r, t) + (1− s) · x(r0, t))−∇xf(t, x(r0, t))]ds.

Again, for notational brevity, we suppress the dependence on r and r0.
Since x is continuous, and since f is C1, then both C1, C2, and A are uniformly bounded:

(9) sup
0≤t≤T

[|A(t)|+ |C1(t)|+ |C2(t)|] ≤M .

Furthermore, since f is C1, we can also see that

(10) lim
r→r0

sup
0≤t≤T

|C2(t)| = 0.

Thus, integrating (7) and recalling (9) and (10), we obtain the bound

|B(t)| ≤ |B(0)|+
∫ t

0
|C2(s)||A(s)|ds +

∫ t

0
|C1(s)||B(s)|ds(11)

≤ |B(0)|+ TP sup
0≤t≤T

|C2(t)|+ M

∫ t

0
|B(s)|ds,

2Here, the ∇xf is an (n× n)-matrix, so that the dot product ∇xf · ∂rx is an n-vector.
3Again, we suppress the dependence of A on r and r0.
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and applying the Gronwall inequality to (11) yields

(12) |B(t)| ≤ etM

[
|B(0)|+ TM sup

0≤t≤T
|C2(t)|

]
.

Note that as r → r0,

(13) B(0) =
x0(r)− x0(r0)

r − r0
− x′0(r0)→ 0.

Combining (12) with (10) and (13), we conclude that B(t) → 0 as r → r0 for each t. By the
definition of B(t), this implies that ∂rx(r0, t) exists and is equal to A(t).

C1-Dependence on Data. By showing that ∂rx(r0, t) exists and is equal to this A(t) in the
preceding argument, we conclude that ∂rx itself solves a linear system of ODEs:

(14) ∂t(∂rx)(r, t) = ∇xf(t, x(r, t)) · ∂rx(r, t), (∂rx)(r, 0) = x′0(r).

This already implies that ∂rx is continuous with respect to t.
Integrating (14), we obtain the bound

|∂rx(r, t)− ∂rx(r0, t)| ≤ |x′0(r)− x′0(r0)|(15)

+

∫ t

0
|∇xf(s, x(r, s)) · ∂rx(r, s)−∇xf(s, x(r0, s)) · ∂rx(r0, s)|ds

≤ |x′0(r)− x′0(r0)|+
∫ t

0
|∇xf(s, x(r, s))−∇xf(s, x(r0, s))||∂rx(r, s)|ds

+

∫ t

0
|∇xf(s, x(r0, s))||∂rx(r, s)− ∂rx(r0, s)|ds.

By Gronwall’s inequality and various uniform bounds, (15) implies that

(16) |∂rx(r, t)− ∂rx(r0, t)| ≤ eLt
[
|x′0(r)− x′0(r0)|+ C

∫ t

0
|∇xf(s, x(r, s))−∇xf(s, x(r0, s))|ds

]
for some constants C,L > 0. Since x0 and f are C1, the terms within the brackets on the right-hand
side of (16) vanish as r → r0. This proves the continuity of ∂rx with respect to r.


