ODE THEORY: C'-DEPENDENCE ON INITIAL DATA

ARICK SHAO

In this short note, we give a detailed proof of the C'-dependence on initial data for a family of
solutions of a C''-system of ODEs. More specifically, we consider the following system,

(1) z' = f(t,l‘),
where:

e ¢ € R is the independent variable.
e z: ] — R" is the unknown, with I C R begin some interval containing O.
e The function f : R; x R? — R" defines the system of ODEs.

The main statement we wish to prove is the following:

Theorem 1. Let J C R be a nonempty closed interval, and suppose = : J, x [0,T]; — R"™ is a
family of solutions—parametrised by r € J—of (1), that is,

(2) a151%'(7“7 t) - f(t7 l‘('f‘, t)), .’L’(T, O) = (L‘O(T),

with xg : J — R™ being the corresponding family of initial data.
If f and xo are both C1, then the solution x is also C* (in both r and t).

Remark. Since f is O, then f is automatically both locally bounded and locally Lipschitz in x.
By the standard ezistence and uniqueness result, each individual solution z(r,-) exists uniquely and
is C' in t. Thus, the remaining task is to prove the same C'-regularity in r.

C%-Dependence on Data. As warm-up, we first prove C?-dependence of the solution z on r. For
this, we fix throughout r,ry € J, and we set!

y(t) :==y(r,rost) := x(r,t) — x(ro, t).

Differentiating y and recalling (2) results in the identity
(3) Y1) = f(t2(r,0) = f(t2(r0,1)).
Integrating (3) and recalling y(0) = zo(r) — zo(rp), we see that
¢
9(0)] < lea(r) = aa(ro)| + | 17(s.2(r)) = f(s.a(ro.5)lds.

Since the domain of z is compact, then by the local Lipschitz properties of f (due to f being C*),

t t
(4)  |y@®)] < |zo(r) — zo(ro)| + L/ |(r,s) — x(ro, s)|ds = |zo(r) — zo(ro)| +L/ ly(s)lds.
0 0
Applying Gronwall’s inequality to (4) yields
| (r, t) — x(ro, t)| = |y(t)] < [o(r) — zo(ro)|e’™.

In particular, as r — r¢, then z(r,t) — x(ro,t), so that z is indeed continuous in r for each t.

Iror simplicity of notation, we suppress the dependence of y on r and ro.
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r-Differentiability of z. The next step is to show that x is differentiable in the r-direction and
to determine this derivative. The main idea is to note from (2) that

o, |:$(Ta t) - x(r0>t):| _ f(t,l’(T‘, t)) - f(t>$(r07t))

r—7T0 r—7To

Taking a formal (and completely unrigorous) limit of the above as r — rg, we can guess that if 9,z
indeed exists, then it should satisfy the following system of ODEs:?

= V. f(t,z(ro,t)) - Opx(ro,t).

r=rQ

00r)(ro.1) = - f(t,(r,1)

To be rigorous, we now work backwards: let A denote the solution of the initial value problem?
(5) OrA(t) = Vaf(t,2(ro,1)) - A(t),  A(0) = x(r0)-

(Since the system is linear, and since V. f(¢,z(ro,t)) is well-defined, A(t) is guaranteed to exist on
all of [0,7T].) Consider now the function B : [0,7] — R" given by

x(r, t) — x(ro, t)
T —T0

(6) B(t) :=

— A(t).

A direct computation using (5), (6), and the fundamental theorem of calculus yields

1
B = ! /Od[f(t,s-x(r,t)—i—(l—s)-x(ro,t))]ds—fo(t,x(ro,t))-A(t)

Cr—r1y ds
(r,t) — z(ro,t)

1
= /0 Vaf(t,s-x(r,t)+ (1 —s)-x(ro,t))ds - T — Vo f(t,xz(ro,t)) - A(t).

r—"To
A bit of algebraic manipulation then reveals that
(7) B'(t) = C1(t) - B(t) + Ca(t) - A(t),
where
1
Q Crt) = [ Vafts-alrt) + (1= 5) oo, )ds,
0

1
Cy(t) = / Vaf(t,s-x(r,t) + (1 —3s) x(ro,t)) — Vuf(t,x(ro,t))]ds.
0
Again, for notational brevity, we suppress the dependence on r and 7.

Since « is continuous, and since f is C', then both Cy, Cy, and A are uniformly bounded:

(9) S A+ [CLB)] +[C(0)]] < M.

Furthermore, since f is C!, we can also see that

(10) lim sup |Ca(t)| =0.
=70 0<¢<T

Thus, integrating (7) and recalling (9) and (10), we obtain the bound
t t
(1) BOI < BO)+ [ [CalA@lds+ [ 10115l

t
<IBOI+TP s [Co(0)]+M [ |Bs)lds,
0<t<T 0

2Here7 the V. f is an (n x n)-matrix, so that the dot product V,f - -z is an n-vector.
?’Again7 we suppress the dependence of A on r and 7.
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and applying the Gronwall inequality to (11) yields
(12) 1B(t)| < ™ ||B(0)] +TM sup |Ca(t)]
0<t<T
Note that as r — 1,

(13) B(o) = ) = 2o(ro) _ g,

r—To
Combining (12) with (10) and (13), we conclude that B(t) — 0 as r — rg for each ¢t. By the
definition of B(t), this implies that 0,z(ro,t) exists and is equal to A(?).

C!-Dependence on Data. By showing that 0,x(ro,t) exists and is equal to this A(¢) in the
preceding argument, we conclude that 0,z itself solves a linear system of ODEs:

(14) 0i(0r)(r,t) = Vo f(t,2(r 1)) - Op(r,t),  (Orx)(r,0) = (r).

This already implies that 0,z is continuous with respect to .
Integrating (14), we obtain the bound

(15) |Ora(r,t) — Ora(ro, )] < |25(r) — 2((ro)|

+ / Vo f (s, 2(r)) - (. s) — Vo (s, 2(r0, 8)) - Drae(ro, 5)|ds
0
< [ (r) — zh(ro)] + /0 Ve f(s,2(r5)) — Vaf (s, 2(ro, s))||Brx(r, 5)|ds

t
+ / V2 f (5, 2(ro, ) |8rz(r, s) — D,x(ro, 5)|ds.
0
By Gronwall’s inequality and various uniform bounds, (15) implies that
t
(16) |82 (r,t) — Bra(ro, t)] < ™ [Ixf)(r) — xg(ro)| + C/ IV f(s,2(r,8)) — Vaf(s,x(ro, s))|ds
0

for some constants C, L > 0. Since zg and f are C!, the terms within the brackets on the right-hand
side of (16) vanish as r — rg. This proves the continuity of 9,x with respect to r.



