
Fall 2012 MAT334 Exam 1
Solutions (LEC0101)

Problem 1. Let C denote the bottom half of the positively oriented unit circle
with center i, i.e., counterclockwise from i− 1 to i+ 1. Evaluate∫

C

(z − i)−3dz.

Solution. The curve C can be parametrized as

γ(t) = i+ eit, γ′(t) = ieit, − π ≤ t ≤ 0.

Thus, the line integral becomes∫
C

(z−i)−3dz =

∫ 0

−π
(γ(t)−i)−3γ′(t)dt =

∫ 0

−π
(i+eit−i)−3ieitdt = i

∫ 0

−π
e−2itdt.

The complex-valued integral on the right-hand side can be computed directly:∫
C

(z − i)−3dz =
i

−2i
e−2it

∣∣0
−π = −1

2
(e0 − e2πi) = 0.

Remark. One could also take t to be the interval π ≤ t ≤ 2π. Also, one could
expand eit as cos t+ i sin t. The final answer, of course, remains unchanged.

Problem 2. Let D1 and D2 be open subsets of C. Prove that their intersection,
D1 ∩D2, is also open.

Solution. Given z ∈ C and r > 0, let Bz(r) denote the open disk with center z
and radius r.

Suppose z ∈ D1 ∩D2. Since z ∈ D1 and D1 is open, there is some r1 > 0
such that Bz(r1) ⊆ D1. Similarly, since z ∈ D2, there is some r2 > 0 with
Bz(r2) ⊆ D2. Letting r = min(r1, r2), then Bz(r) is contained in both D1 and
D2, that is, Bz(r) ⊆ D1 ∩D2.

This shows that every point of D1 ∩ D2 is an interior point. Thus, by
definition, D1 ∩D2 is open.

Remark. There are certainly other correct proofs, but the above method is the
shortest and most direct.

Problem 3. Find all solutions z of the equation

z5 =
√

3− i.

Solution. In polar coordinates,

z5 =
√

3− i = 2e(−
π
6 +2πk)i

for any integer k. Taking the fifth root of the above yields

z =
5
√

2 · e 1
5 (−

π
6 +2πk)i.
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Eliminating all nonunique (repeating) values, we obtain five solutions,

z =
5
√

2 · e(− π
30+

2πk
5 )i, k = 0, 1, 2, 3, 4.

Remark. One could also write

√
3− i = 2e(

11π
6 +2πk)i,

and with this, the (same) five solutions are

z =
5
√

2 · e( 11π
30 + 2πk

5 )i, k = 0, 1, 2, 3, 4.

Problem 4. Consider the following limit:

lim
z→2

z̄ − 2

z − 2
.

If the limit exists, prove it (using δ-ε or some other rigorous means). If the
limit does not exist, show why not.

Solution. The limit does not exist!
On the horizontal line through 2 (Im z = 0, i.e., z = x ∈ R),

z̄ − 2

z − 2
=
x− 2

x− 2
= 1,

while on the vertical line through 2 (Re z = 2, i.e., z = 2 + iy),

z̄ − 2

z − 2
=
−iy
iy

= −1.

Thus, as z → 2, the function (z̄−2)/(z−2) approaches two different values,
1 from the horizontal line Im z = 0, and −1 from the vertical line Re z = 2.
Thus, the limit in the problem statement cannot possibly exist.

Remark. This is essentially the example discussed in class. If we let w = z − 2,
i.e., we shift the picture left by 2, then the limit becomes

lim
w→0

w̄

w
,

which was shown to not exist (the argument was the same as in the solution).

Problem 5. For which z ∈ C does the series

∞∑
n=0

|zn + zn+1|

converge?
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Solution. The partial sums of the series can be written as

m∑
n=0

|zn + zn+1| =
m∑
n=0

|1 + z||zn| = |1 + z|
m∑
n=0

|z|n.

The right-hand side is simply a constant, |1 + z|, times (the partial sum of) the
geometric series for |z|.

Suppose first that z 6= −1, so that the constant |1 + z| is nonzero. The, the
series

∑∞
n=0 |zn + zn+1| converges if and only if the geometric series

∑∞
n=0 |z|n

converges. Since the geometric series converges if |z| < 1 and diverges if |z| ≥ 1,
then the same holds for

∑∞
n=0 |zn + zn+1|.

On the other hand, if z = −1, then each term of the series satisfies

|zn + zn+1| = |1 + z||z|n = 0,

and hence
∞∑
n=0

|zn + zn+1| =
∞∑
n=0

0 = 0.

Thus, the series converges if |z| < 1 or z = −1 and diverges otherwise.

Remark. One can also apply the ratio test:

|zn+1 + zn+2|
|zn + zn+1|

=
|1 + z||z|n+1

|1 + z||z|n
= |z|.

This implies that the series converges when |z| < 1 and diverges when |z| > 1.
The remaining case |z| = 1 still has to be tested directly, though.
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