Fall 2012 MAT334 Exam 1 Solutions (LEC0101)

Problem 1. Let C denote the bottom half of the positively oriented unit circle with center i, i.e., counterclockwise from $i-1$ to $i+1$. Evaluate

$$
\int_{C}(z-i)^{-3} d z
$$

Solution. The curve C can be parametrized as

$$
\gamma(t)=i+e^{i t}, \quad \gamma^{\prime}(t)=i e^{i t}, \quad-\pi \leq t \leq 0
$$

Thus, the line integral becomes

$$
\int_{C}(z-i)^{-3} d z=\int_{-\pi}^{0}(\gamma(t)-i)^{-3} \gamma^{\prime}(t) d t=\int_{-\pi}^{0}\left(i+e^{i t}-i\right)^{-3} i e^{i t} d t=i \int_{-\pi}^{0} e^{-2 i t} d t
$$

The complex-valued integral on the right-hand side can be computed directly:

$$
\int_{C}(z-i)^{-3} d z=\left.\frac{i}{-2 i} e^{-2 i t}\right|_{-\pi} ^{0}=-\frac{1}{2}\left(e^{0}-e^{2 \pi i}\right)=0
$$

Remark. One could also take t to be the interval $\pi \leq t \leq 2 \pi$. Also, one could expand $e^{i t}$ as $\cos t+i \sin t$. The final answer, of course, remains unchanged.

Problem 2. Let D_{1} and D_{2} be open subsets of \mathbb{C}. Prove that their intersection, $D_{1} \cap D_{2}$, is also open.

Solution. Given $z \in \mathbb{C}$ and $r>0$, let $B_{z}(r)$ denote the open disk with center z and radius r.

Suppose $z \in D_{1} \cap D_{2}$. Since $z \in D_{1}$ and D_{1} is open, there is some $r_{1}>0$ such that $B_{z}\left(r_{1}\right) \subseteq D_{1}$. Similarly, since $z \in D_{2}$, there is some $r_{2}>0$ with $B_{z}\left(r_{2}\right) \subseteq D_{2}$. Letting $r=\min \left(r_{1}, r_{2}\right)$, then $B_{z}(r)$ is contained in both D_{1} and D_{2}, that is, $B_{z}(r) \subseteq D_{1} \cap D_{2}$.

This shows that every point of $D_{1} \cap D_{2}$ is an interior point. Thus, by definition, $D_{1} \cap D_{2}$ is open.
Remark. There are certainly other correct proofs, but the above method is the shortest and most direct.

Problem 3. Find all solutions z of the equation

$$
z^{5}=\sqrt{3}-i
$$

Solution. In polar coordinates,

$$
z^{5}=\sqrt{3}-i=2 e^{\left(-\frac{\pi}{6}+2 \pi k\right) i}
$$

for any integer k. Taking the fifth root of the above yields

$$
z=\sqrt[5]{2} \cdot e^{\frac{1}{5}\left(-\frac{\pi}{6}+2 \pi k\right) i}
$$

Eliminating all nonunique (repeating) values, we obtain five solutions,

$$
z=\sqrt[5]{2} \cdot e^{\left(-\frac{\pi}{30}+\frac{2 \pi k}{5}\right) i}, \quad k=0,1,2,3,4
$$

Remark. One could also write

$$
\sqrt{3}-i=2 e^{\left(\frac{11 \pi}{6}+2 \pi k\right) i}
$$

and with this, the (same) five solutions are

$$
z=\sqrt[5]{2} \cdot e^{\left(\frac{11 \pi}{30}+\frac{2 \pi k}{5}\right) i}, \quad k=0,1,2,3,4
$$

Problem 4. Consider the following limit:

$$
\lim _{z \rightarrow 2} \frac{\bar{z}-2}{z-2}
$$

If the limit exists, prove it (using $\delta-\epsilon$ or some other rigorous means). If the limit does not exist, show why not.

Solution. The limit does not exist!

On the horizontal line through $2(\operatorname{Im} z=0$, i.e., $z=x \in \mathbb{R})$,

$$
\frac{\bar{z}-2}{z-2}=\frac{x-2}{x-2}=1
$$

while on the vertical line through $2(\operatorname{Re} z=2$, i.e., $z=2+i y)$,

$$
\frac{\bar{z}-2}{z-2}=\frac{-i y}{i y}=-1
$$

Thus, as $z \rightarrow 2$, the function $(\bar{z}-2) /(z-2)$ approaches two different values, 1 from the horizontal line $\operatorname{Im} z=0$, and -1 from the vertical line $\operatorname{Re} z=2$. Thus, the limit in the problem statement cannot possibly exist.
Remark. This is essentially the example discussed in class. If we let $w=z-2$, i.e., we shift the picture left by 2 , then the limit becomes

$$
\lim _{w \rightarrow 0} \frac{\bar{w}}{w}
$$

which was shown to not exist (the argument was the same as in the solution).
Problem 5. For which $z \in \mathbb{C}$ does the series

$$
\sum_{n=0}^{\infty}\left|z^{n}+z^{n+1}\right|
$$

converge?

Solution. The partial sums of the series can be written as

$$
\sum_{n=0}^{m}\left|z^{n}+z^{n+1}\right|=\sum_{n=0}^{m}|1+z|\left|z^{n}\right|=|1+z| \sum_{n=0}^{m}|z|^{n}
$$

The right-hand side is simply a constant, $|1+z|$, times (the partial sum of) the geometric series for $|z|$.

Suppose first that $z \neq-1$, so that the constant $|1+z|$ is nonzero. The, the series $\sum_{n=0}^{\infty}\left|z^{n}+z^{n+1}\right|$ converges if and only if the geometric series $\sum_{n=0}^{\infty}|z|^{n}$ converges. Since the geometric series converges if $|z|<1$ and diverges if $|z| \geq 1$, then the same holds for $\sum_{n=0}^{\infty}\left|z^{n}+z^{n+1}\right|$.

On the other hand, if $z=-1$, then each term of the series satisfies

$$
\left|z^{n}+z^{n+1}\right|=|1+z||z|^{n}=0
$$

and hence

$$
\sum_{n=0}^{\infty}\left|z^{n}+z^{n+1}\right|=\sum_{n=0}^{\infty} 0=0
$$

Thus, the series converges if $|z|<1$ or $z=-1$ and diverges otherwise.
Remark. One can also apply the ratio test:

$$
\frac{\left|z^{n+1}+z^{n+2}\right|}{\left|z^{n}+z^{n+1}\right|}=\frac{|1+z||z|^{n+1}}{|1+z||z|^{n}}=|z|
$$

This implies that the series converges when $|z|<1$ and diverges when $|z|>1$. The remaining case $|z|=1$ still has to be tested directly, though.

