Fall 2012 MAT334 Exam 2 Solutions (LEC0101)

Problem 1. Let the curve γ be the positively-oriented boundary of the square with corners at $2+2 i,-2+2 i,-2-2 i$, and $2-2 i$. Evaluate the following:

$$
\int_{\gamma} \frac{e^{z}}{z^{2}+2 z-3} d z
$$

Solution. First, the integrand can be factored as

$$
\frac{e^{z}}{z^{2}+2 z-3}=\frac{e^{z}}{(z+3)(z-1)}
$$

Thus, the poles of the integrand lie at $z_{0}=-3$ and $z_{0}=1$. Since -3 lies outside γ and 1 lies within γ, we can write the above integral as

$$
\int_{\gamma} \frac{e^{z}}{z^{2}+2 z-3} d z=\int_{\gamma} \frac{\frac{e^{z}}{z+3}}{z-1} d z=\int_{\gamma} \frac{f(z)}{z-1} d z
$$

where this function f is holomorphic in some convex domain D that contains γ and its interior. As a result, we can apply the Cauchy formula:

$$
\int_{\gamma} \frac{e^{z}}{z^{2}+2 z-3} d z=2 \pi i \cdot f(1)=\frac{1}{2} e \pi i
$$

Problem 2. For what $z \in \mathbb{C}$ is the function $f(z)=|z|^{2}$ (complex) differentiable? For what $z \in \mathbb{C}$ is f not differentiable?

Solution. The most systematic method is with the Cauchy-Riemann equations. Letting

$$
f(z)=u(x, y)+i v(x, y), \quad z=x+i y
$$

we see that $u(x, y)=x^{2}+y^{2}$ and $v(x, y)=0$. Thus,

$$
\partial_{x} u(x, y)=2 x, \quad \partial_{y} u(x, y)=2 y, \quad \partial_{x} v(x, y)=0, \quad \partial_{y} v(x, y)=0
$$

Since u and v are both continuously differentiable, f is complex differentiable if and only if $\partial_{x} u=\partial_{y} v$ and $\partial_{x} v=-\partial_{y} u$. This is true if and only if $x=y=0$, i.e., when $z=0$. Thus, f is differentiable when $z=0$, and f is not differentiable for any other z.

Remark. One can also solve this using the definition of differentiability. Fix $z \in \mathbb{C}$, and consider the limit

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h} & =\lim _{h \rightarrow 0} \frac{|z+h|^{2}-|z|^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{z \bar{h}+\bar{z} h}{h} \\
& =z+\bar{z} \lim _{h \rightarrow 0} \frac{\bar{h}}{h}
\end{aligned}
$$

From an example in class (or from the first midterm!), the limit of \bar{h} / h as $h \rightarrow 0$ does not exist. Thus, the derivative $f^{\prime}(z)$ exists if and only if $\bar{z}=0$, i.e., if and only if $z=0$.

Problem 3. Suppose f and g are holomorphic functions such that:

- f has a zero of order $m>0$ at $z_{0} \in \mathbb{C}$.
- g has a pole of order m at z_{0}.

Prove that $f \cdot g$ can be analytically extended to a nonzero value at z_{0}.
Solution. Since f has a zero of order m at z_{0}, we can write

$$
f(z)=\left(z-z_{0}\right)^{m} F(z)
$$

where F is some holomorphic function (in particular at z_{0}) that is nonzero at z_{0}. Similarly, since g has a pole of order m at z_{0}, we can write

$$
g(z)=\left(z-z_{0}\right)^{-m} G(z)
$$

where G is some holomorphic function (near and at z_{0}) that is nonzero at z_{0}.
As a result, $f(z) g(z)=F(z) G(z)$ when $z \neq z_{0}$, and the right-hand side provides an analytic extension of $f \cdot g$ to z_{0}. Moreover, since neither F nor G vanish at z_{0}, then $F\left(z_{0}\right) G\left(z_{0}\right) \neq 0$.

Problem 4. Let

$$
f(z)=\frac{(z+2) \sin z}{\left(e^{z}-1\right)^{2}}
$$

Show that f has a pole of order 1 at $z=0$, and then compute $\operatorname{Res}(f ; 0)$.
Solution. Note the following:

- $z+2$ is an entire function, whose value at $z=0$ is 2 .
- From the Taylor series for sin, we can write

$$
\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}=z \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}=z g(z)
$$

where $g(z)$ is entire, and where $g(0)=1$.

- From the Taylor series for exp, we can write

$$
e^{z}-1=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}-1=\sum_{n=1}^{\infty} \frac{z^{n}}{n!}=z \sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)!}=z h(z)
$$

where $h(z)$ is entire, and where $h(0)=1$.

As a result, we can write

$$
f(z)=\frac{z}{z^{2}} \frac{(z+2) g(z)}{[h(z)]^{2}}=\frac{1}{z} \frac{(z+2) g(z)}{[h(z)]^{2}} .
$$

Since the fraction $(z+2) g(z) /[h(z)]^{2}$ is entire and nonzero at $z=0$, it follows from this representation that f has a pole of order 1 at $z=0$.

Finally, to compute the residue, since the pole at $z=0$ has order 1,

$$
\operatorname{Res}(f ; 0)=\left.z f(z)\right|_{z=0}=\frac{(0+2) g(0)}{[h(0)]^{2}}=2
$$

Remark. There is no need to deal with the full Taylor series for $\sin z$ and $e^{z}-1$. For example, one can also recall that

$$
g(0)=\sin ^{\prime} 0=1, \quad h(0)=\left.\frac{d}{d z}\left(e^{z}-1\right)\right|_{z=0}=1 .
$$

The above formula for the residue was given in class. This can also be derived directly. Since $F(z)=(z+2) g(z) /[h(z)]^{2}$ is entire, it has a power series

$$
F(z)=\sum_{n=0}^{\infty} c_{n} z^{n} .
$$

As a result,

$$
f(z)=z^{-1} F(z)=c_{0} z^{-1}+\sum_{n=0}^{\infty} c_{n+1} z^{n}
$$

and hence

$$
\operatorname{Res}(f ; 0)=c_{0}=F(0)=2
$$

The residue can also be computed directly using the Cauchy formula.
Problem 5. Let γ be any smooth piecewise continuous curve from $-i$ to i that does not pass through the positive real axis $[0, \infty)$. Compute

$$
\int_{\gamma} \frac{1}{z} d z
$$

(Hint: The answer is not $+\pi i$).
Solution. The main idea is to use the fundamental theorem of calculus, since z^{-1} has the logarithm as its antiderivative. The caveat, however, is that this \log has to be holomorphic wherever the curve γ is defined. Since γ is assumed to not cross the positive real axis, we should choose a branch of log which fails to be holomorphic (and continuous) on the positive real axis. For example, we can use the branch

$$
L(z)=\ln z+i \arg z, \quad 0 \leq \arg z<2 \pi .
$$

Using L and the fundamental theorem of calculus,

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z} d z & =\int_{\gamma} L^{\prime}(z) d z \\
& =L(i)-L(-i) \\
& =\left(\ln i+\frac{\pi}{2} i\right)-\left[\ln (-i)+\frac{3 \pi}{2} i\right] \\
& =-\pi i
\end{aligned}
$$

Remark. Since the principal logarithm (Log) is not continuous on the negative real axis, where γ crosses, we cannot use this as the "correct" antiderivative of z^{-1}. Indeed, using Log yields the incorrect answer πi.

