MAT 334 Practice Exam 1 Solutions

Problem 1. Let L denote the line segment from 3 - 2i to -1. Evaluate

$$\int_L z dz.$$

Solution. The first step is to parametrize the curve. The simplest such parametrization is the one from precalculus/calculus:

$$\gamma(t) = -1 \cdot t + (3 - 2i) \cdot (1 - t), \qquad 0 \le t \le 1.$$

Since $\gamma'(t) = -1 - (3 - 2i) = -4 + 2i$, then

$$\int_{L} z dz = \int_{0}^{1} \gamma(t) \gamma'(t) dt$$

= $\int_{0}^{1} [-t + (3 - 2i)(1 - t)] dt \cdot (-4 + 2i)$
= $(-4 + 2i) \int_{0}^{1} [(-4 + 2i)t + (3 - 2i)] dt$
= $(-4 + 2i) \left[\frac{1}{2} (-4 + 2i) + (3 - 2i) \right]$
= $(-4 + 2i)(1 - i)$
= $-2 + 6i.$

Problem 2. Prove or disprove: if both $U \subseteq \mathbb{C}$ and $V \subseteq U$ are open, then

 $U \setminus V = \{ z \mid z \in U \text{ and } z \notin V \},\$

i.e., the set of all points in U which are not in V, is also open.

Solution. The statement is false. For example, if

$$U = \{ z \mid |z| < 2 \}, \qquad V = \{ x \mid |z| < 1 \},$$

then both U and V are open, and $V \subseteq U$. One can then see that

$$U \setminus V = \{ z \mid 1 \le |z| < 2 \},\$$

i.e., the annulus with inner radius 1 and outer radius 2.

Now, any point z with |z| = 1 is an element of $U \setminus V$. However, this z is also a boundary point of $U \setminus V$ (intuitively, if you take any small step from z toward the origin, you are no longer on $U \setminus V$). Since $U \setminus V$ contains boundary points, then $U \setminus V$ cannot be open. **Problem 3.** Find all values of 2^{-i} .

Solution. This can be computed directly:

$$2^{-i} = e^{-i(\log 2)} = e^{-i(\ln 2 + i \arg 2)} = e^{-i\ln 2 + 2\pi n} = e^{-i\ln 2}e^{2\pi n}$$

Problem 4. Does the limit

$$\lim_{z \to 0} e^{\frac{1}{z}}$$

exist? Justify your answer. (Note: ∞ is allowed to be a possible limit value.)

Solution. The limit does not exist.

To see this, we need only check what happens to $e^{1/z}$ when $z \to 0$ from different directions. First, consider when $z \to 0$ along the positive x-axis, i.e., $z = x \in \mathbb{R}$ and $x \searrow 0$. Since $1/x \nearrow +\infty$ as $x \searrow 0$, we have

$$\lim_{x \to 0} e^{\frac{1}{x}} = \infty,$$

On the other hand, if $z \to 0$ instead along the negative x-axis, i.e., $z = x \in \mathbb{R}$ and $x \nearrow 0$, then $1/x \searrow -\infty$, and hence

$$\lim_{x \to 0} e^{\frac{1}{x}} = 0.$$

Remark. Also, notice that if $z \to 0$ along the imaginary axis, i.e., $z = iy \in i\mathbb{R}$ and $y \to 0$, then $e^{1/z} = e^{-i/y}$ oscillates infinitely many times along the unit circle, and the limit in this direction does not exist.

Problem 5. (Fall 2012, Midterm 1) Consider, for any fixed $z \in \mathbb{C}$, the series

$$\sum_{n=0}^{\infty} |z^n + z^{n+1}|.$$

For which z does this series converge? Diverge?

Solution. The partial sums of the series can be written as

$$\sum_{n=0}^{m} |z^n + z^{n+1}| = \sum_{n=0}^{m} |1 + z| |z^n|.$$

Suppose first that $z \neq -1$, so that the constant |1 + z| is nonzero. Then,

$$\sum_{n=0}^{m} |z^n + z^{n+1}| = |1+z| \sum_{n=0}^{m} |z^n| = |1+z| \sum_{n=0}^{m} |z|^n.$$

The right-hand side is simply a constant, |1 + z|, times (the partial sum of) the geometric series for |z|. Thus, $\sum_{n=0}^{\infty} |z^n + z^{n+1}|$ converges if and only if the geometric series $\sum_{n=0}^{\infty} |z|^n$ converges. Since the geometric series converges if |z| < 1 and diverges if $|z| \ge 1$, then the same holds for $\sum_{n=0}^{\infty} |z^n + z^{n+1}|$.

On the other hand, if z = -1, then each term of the series satisfies

$$|z^{n} + z^{n+1}| = |1 + z||z|^{n} = 0,$$

and hence

$$\sum_{n=0}^{\infty} |z^n + z^{n+1}| = \sum_{n=0}^{\infty} 0 = 0.$$

The series converges if |z| < 1 or z = -1 and diverges otherwise. *Remark.* One can also apply the ratio test:

$$\frac{|z^{n+1} + z^{n+2}|}{|z^n + z^{n+1}|} = \frac{|1 + z||z|^{n+1}}{|1 + z||z|^n} = |z|.$$

This implies that the series converges when |z| < 1 and diverges when |z| > 1. The remaining case |z| = 1 still has to be tested directly, though.