Winter 2013 MAT 334 (LEC5010) Exam 2

You have 50 minutes. Answer 4 of the following 5 questions. If you answer all 5 , your score will be determined by the best 4 solutions you provide.

Problem 1. Consider the following power series about $z_{0}=0$:

$$
\sum_{n=0}^{\infty}\left(2 \cdot 3^{n} \cdot z^{n}\right)
$$

What is its radius of convergence?
Problem 2. Find the entire function $f=u+i v$ such that:

- $f(0)=2$
- The imaginary part of f satisfies $v(x, y)=x$.

State your final answer for f in terms of z, not x and y.
Problem 3. Let γ denote the positively oriented boundary of a triangle with vertices at $-1-i, 1-i$, and i. Evaluate

$$
\int_{\gamma} \frac{d z}{z^{2}+2 i z}
$$

Problem 4. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire, and assume that $|f(z)|>1$ for all $z \in \mathbb{C}$. What can you say about f ?

Problem 5. Recall that the index of a curve γ with respect to $z_{0} \in \mathbb{C}$ is

$$
n\left(\gamma ; z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}} .
$$

Evaluate $n(\gamma ; 0)$, where γ is the following piecewise smooth, closed curve:

$$
\gamma:[0,6] \rightarrow \mathbb{C}, \quad \gamma(t)= \begin{cases}(1+t) e^{2 \pi i t} & 0 \leq t \leq 5 \\ 6-5(t-5) & 5 \leq t \leq 6\end{cases}
$$

