MAT 334 Test 2 Solutions

Problem 1. Consider the following power series about $z_{0}=0$:

$$
\sum_{n=0}^{\infty}\left(2 \cdot 3^{n} \cdot z^{n}\right)
$$

What is its radius of convergence?
Solution. Several methods of determining the radius of convergence have been discussed in class. Basically, all these methods will work for this problem.

- Root test: The coefficients of the series is $a_{n}=2 \cdot 3^{n}$. Since

$$
\lim _{n}\left|a_{n}\right|^{\frac{1}{n}}=\lim _{n}\left(2^{\frac{1}{n}} 3\right)=3,
$$

then by the root test, the radius of convergence is $1 / 3$.

- Ratio test: With the a_{n} 's as above, since

$$
\lim _{n} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n} 3=3
$$

then by the ratio test, the radius of convergence is $1 / 3$.

- Geometric series: Since $\sum_{n} w^{n}$ converges if and only if $|w|<1$, then

$$
\sum_{n=0}^{\infty}\left(2 \cdot 3^{n} \cdot z^{n}\right)=2 \sum_{n=0}^{\infty}(3 z)^{n}
$$

converges if and only if $|3 z|<1$, that is, if and only if $|z|<1 / 3$. It follows that the radius of convergence is $1 / 3$.

Problem 2. Find the entire function $f=u+i v$ such that:

- $f(0)=2$
- The imaginary part of f satisfies $v(x, y)=x$.

State your final answer for f in terms of z, not x and y.

Solution. It is not too hard to determine what f is by just staring at the problem hard enough, but it can be computed in a straightforward manner using the Cauchy-Riemann equations. In particular, for f to be analytic, u and v must satisfy the Cauchy-Riemann equations,

$$
\partial_{x} u(x, y)=\partial_{y} v(x, y)=0, \quad \partial_{y} u(x, y)=-\partial_{x} v(x, y)=-1 .
$$

Integrating the second Cauchy-Riemann equation in y yields

$$
u(x, y)=-y+g(x)
$$

for some function g of x. Using the first Cauchy-Riemann equation, we have

$$
g^{\prime}(x)=\partial_{x} u(x, y)=0,
$$

hence g is a constant function. Combining the above, we obtain

$$
u(x, y)=-y+C
$$

for some constant C, and hence

$$
f(x, y)=u(x, y)+i v(x, y)=(-y+i x)+C=i(x+i y)+C .
$$

Finally, the condition $f(0)=2$ implies that $C=2$. Since $z=x+i y$, then the final answer can be stated as $f(z)=i z+2$.

Problem 3. Let γ denote the positively oriented boundary of a triangle with vertices at $-1-i, 1-i$, and i. Evaluate

$$
\int_{\gamma} \frac{d z}{z^{2}+2 i z}
$$

Solution. Since γ is a piecewise smooth closed curve, we hope to apply Cauchy's formula to the above contour integral.

First of all, the integrand can be factored as

$$
\frac{1}{z^{2}+2 i z}=\frac{1}{z(z+2 i)},
$$

which is singular at two points, $z=0$ and $z=-2 i$. Note that $z=0$ is inside γ, while $z=-2 i$ is outside. Thus, by letting D be some open simply connected region containing γ and its interior, but not containing $-2 i$, then

$$
f: D \rightarrow \mathbb{C}, \quad f(z)=\frac{1}{z+2 i}
$$

is analytic on D. Thus, by Cauchy's formula, we can compute

$$
\int_{\gamma} \frac{d z}{z^{2}+2 i z}=\int_{\gamma} \frac{f(z)}{z} d z=2 \pi i \cdot n(\gamma ; 0) \cdot f(0)=2 \pi i \cdot 1 \cdot \frac{1}{2 i}=\pi
$$

Problem 4. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire, and assume that $|f(z)|>1$ for all $z \in \mathbb{C}$. What can you say about f ?

Solution. Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be the function $g(z)=1 / f(z)$ (note that since $|f(z)|>1$ for all $z \in \mathbb{C}$, then $g(z)$ is well-defined for all $z \in \mathbb{C})$. Moreover,

$$
|g(z)|=\frac{1}{|f(z)|}<1, \quad z \in \mathbb{C}
$$

In particular, g is an entire function which is everywhere bounded. By Liouville's theorem, g is a constant function, hence $f=1 / g$ is also constant,

$$
f(z)=\lambda, \quad z \in \mathbb{C}
$$

Finally, since $|f|>1$ everywhere, the constant λ must satisfy $|\lambda|>1$.
Problem 5. Recall that the index of a curve γ with respect to $z_{0} \in \mathbb{C}$ is

$$
n\left(\gamma ; z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}}
$$

Evaluate $n(\gamma ; 0)$, where γ is the following piecewise smooth, closed curve:

$$
\gamma:[0,6] \rightarrow \mathbb{C}, \quad \gamma(t)= \begin{cases}(1+t) e^{2 \pi i t} & 0 \leq t \leq 5 \\ 6-5(t-5) & 5 \leq t \leq 6\end{cases}
$$

Solution. The index $n(\gamma ; 0)$ is precisely the number of times γ goes around 0 counterclockwise. By graphing γ, you can (or should be able to) see that γ spirals around 0 counterclockwise five times. Thus, $n(\gamma ; 0)=5$.

