Spring 2014 MAT 336 Practice Exam 1

You have 1 hour. Answer 4 of the following 5 questions. If you answer all 5, your score will be determined by the best 4 solutions you provide.

Problem 1. Does the series

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{4}+4}}
$$

converge? Justify your answer.
Problem 2. Find $\liminf _{n} x_{n}$, where

$$
x_{n}=\left(2+\frac{1}{n}\right) \cos \frac{\pi n}{6}
$$

Problem 3. Let $d: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ be defined by

$$
d(x, y)=(x-y)^{2} .
$$

Is d a metric on \mathbb{R} ? Why or why not?
Problem 4. Show that the set

$$
(-1,0) \cup(0,1)=\{x \in \mathbb{R} \mid-1<x<0 \text { or } 0<x<1\}
$$

has the same cardinality as \mathbb{R}.
Problem 5. Let $\left(a_{n}\right)$ be a sequence of real numbers, and suppose $\lim _{n} a_{n}=L$. Show the following limit also holds:

$$
\lim _{n} \frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)=L
$$

Extra Problem. Give an example of a sequence $\left(x_{n}\right)$ in \mathbb{R} such that

$$
\lim _{n}\left|x_{n+1}-x_{n}\right|=0,
$$

but $\left(x_{n}\right)$ does not converge to a real number.

