
Spring 2014 MAT 336 Practice Exam 1

Here are full solutions to the practice exam questions, along with some ideas
on how to think about them. There is a bit more detail in these write-ups
than would be expected of you in a heavily timed exam.

Problem 1. Does the series

∞∑
n=0

1√
n4 + 4

converge? Justify your answer.

Idea. The simplest way to do this is to use the comparison test to reduce our
problem to checking the convergence of a much easier series.

Solution. Since for each n,

√
n4 + 4 ≥

√
n4 = n2,

then for each n, we have that

1√
n4 + 4

≤ 1

n2
.

Since
∑∞

n=1 n
−2 converges (see, e.g., your last homework assignment), then

the comparison test implies that the series in question also converges.

Problem 2. Find lim infn xn, where

xn =

(
2 +

1

n

)
cos

πn

6
.

Idea. Note first that 2 + n−1 becomes arbitrarily close to 2, while cos(πn/6)
oscillates along several values between −1 and 1. Thus, the values of xn
are minimized when the cosine factor becomes −1 (which happens infinitely
many times). Thus, we expect lim infn xn to be 2 · (−1) = −2.

Solution. First, we need only consider what happens for large n, for which
2 + n−1 is very close to 2. For such n, the infimum of the corresponding tail,

mn = inf{xn, xn+1, xn+2, . . . },
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is achieved by xkn , where kn is the smallest number such that kn ≥ n and
cos(πkn/6) = −1 (i.e., kn/6 is an odd integer). Thus,

mn = xkn = −(2 + k−1n ).

As a result, since kn increases to ∞ as n→∞, then

lim inf
n

xn = lim
n
mn = − lim

n
(2 + k−1n ) = −2.

Problem 3. Let d : R× R→ [0,∞) be defined by

d(x, y) = (x− y)2.

Is d a metric on R? Why or why not?

Idea. The thing to do is to test each condition in the definition the metric.
Either all conditions are satisfied, so that d is indeed a metric, or some
condition is violated, so that d is not a metric.

Solution. d does not satisfy the triange inequality—for example,

d(2, 0) = (2− 0)2 = 4, d(1, 0) = (1− 0)2 = 1, d(2, 1) = (2− 1)2 = 1,

hence it follows that

d(2, 0) = 4 6≤ 2 = d(2, 1) + d(1, 0).

Thus, d is not a metric on R.

Problem 4. Show that the set

(−1, 0) ∪ (0, 1) = {x ∈ R | −1 < x < 0 or 0 < x < 1}

has the same cardinality as R.

Idea. While it is possible to directly construct a one-to-one correspondence
between (−1, 0)∪ (0, 1) and R, it is far, far easier to construct two injections
and use the Schröder-Bernstein theorem. We do this below.

Solution. The identity function

f1 : (−1, 0) ∪ (0, 1)→ R, f1(x) = x
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is an injection (a one-to-one function), so that

|(−1, 0) ∪ (0, 1)| ≤ |R|.

For the other direction, we note that

f2 : R→ (0, 1), f2(x) =
1

π

(
Tan−1 x+

π

2

)
is in fact a one-to-one correspondence between R and (0, 1). Thus,

|R| ≤ |(−1, 0) ∪ (0, 1)|.

From these two comparisons, we obtain, via the Schröder-Bernstein theorem,

|(−1, 0) ∪ (0, 1)| = |R|.

Problem 5. Let (an) be a sequence of real numbers, and suppose limn an = L.
Show the following limit also holds:

lim
n

1

n
(a1 + a2 + · · ·+ an) = L.

Idea. Note the quantity inside the limit is just the average of all the ak’s up
to n. While anything can happen for small k’s, in contrast, ak will be very
close to L for large k’s. Thus, as n becomes larger and larger, then more
and more weight in this average will be on ak’s that are very close to L. As
n → ∞, the contribution of the early ak’s (which can be far from L) will
tend to zero, so that the average will be as close to L as one wants.

Solution. Fix ε > 0. Since an → L, there exists N1 such that

|an − L| <
ε

2
, n ≥ N1.

With N1 fixed, we can now find N2 such that

1

n

N1∑
k=1

|ak − L| <
ε

2
, n ≥ N2.

Thus, as long as n ≥ N = max(N1, N2), we can bound∣∣∣∣ 1n(a1 + . . . an)− L
∣∣∣∣ ≤ 1

n

n∑
k=1

|ak − L|
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≤ 1

n

N1∑
k=1

|ak − L|+
1

n

n∑
k=N1+1

|ak − L|

<
ε

2
+

1

n

n∑
k=N1+1

ε

2

≤ ε

2
+
ε

2
= ε.

It follows that n−1(a1 + . . . an)→ L, as desired.

Extra Problem. Give an example of a sequence (xn) in R such that

lim
n
|xn+1 − xn| = 0,

but (xn) does not converge to a real number.

Idea. We want to find a sequence (xn) such that consecutive points are as
close together as we want, but the points of the sequence still “escape” and
do not clump anywhere. This can be done by simply experimenting.

For a bit more insight on how to construct such a sequence, though,
consider the following expression of xn as a telescoping sum:

xn = x0 +
n∑

k=1

(xk − xk−1).

Thus, we see the convergence of (xn) is equivalent to that of the infinite series∑∞
k=1 ak, where ak = xk − xk−1. From this perspective, it seems reasonable

to find ak such that ak → 0, but
∑∞

k=1 ak diverges. One example of this is
the harmonic series, ak = 1/k, on which we base our answer below.

Solution. Consider the sequence

xn =
n∑

k=1

1

k
.

Since these are the partial sums for the harmonic series, (xn) does not con-
verge to a real number. However,

lim
n
|xn+1 − xn| = lim

n

1

n+ 1
= 0.
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