Spring 2014 MAT 336 Practice Exam 3

Answer questions! Get points!
Problem 1. Consider the sequence of functions

$$
f_{n}:[0,2 \pi] \rightarrow \mathbb{R}, \quad f_{n}(x)=\sin (n x)
$$

Does $\left(f_{n}\right)$ converge uniformly to some $g:[0,2 \pi] \rightarrow \mathbb{R}$? Why or why not?
Problem 2. Let (X, d) be a metric space, and let K_{1} and K_{2} be compact subsets of X. Show that $K_{1} \cup K_{2}$ is also a compact subset of \mathbb{R}^{n}.

Problem 3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, and suppose $\left|f^{\prime}(x)\right| \leq 2$ for any $x \in \mathbb{R}$. Show that f is Lipschitz, with Lipschitz constant 2, i.e.,

$$
|f(x)-f(y)| \leq 2|x-y|, \quad x, y \in \mathbb{R}
$$

Problem 4. Consider the space X of all continuous maps $f:[-1,1] \rightarrow \mathbb{R}$ which are also differentiable on $(-1,1)$, with metric

$$
d: X \times X \rightarrow[0, \infty), \quad d(f, g)=\sup _{x \in[-1,1]}|f(x)-g(x)| .
$$

Show that (X, d) is not complete.
Problem 5. Suppose $f:[-1,0] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ are (Riemann) integrable, and suppose $f(0)=g(0)$. Define now

$$
h:[-1,1] \rightarrow \mathbb{R}, \quad h(x)= \begin{cases}f(x) & -1 \leq x \leq 0 \\ g(x) & 0 \leq x \leq 1\end{cases}
$$

Show that h is integrable. What is $\int_{-1}^{1} h(x) d x$?

