Spring 2014 MAT 336 Exam 1

You have 1 hour. Answer 4 of the following 5 questions. If you answer all 5, your score will be determined by the best 4 solutions you provide.

Problem 1. Consider the set

$$A = \{ (1+x^2)^{-1} \mid x \in \mathbb{R} \}.$$

Find sup A and inf A, and justify your answers.

Problem 2. Find the following limit:

$$\lim_{n} [\log(n+3) - \log n].$$

Prove that your answer is correct.

Problem 3. Give a specific example of a sequence (x_n) in \mathbb{R} and a subsequence (x_{n_k}) of (x_n) , such that $\sum_{n=0}^{\infty} x_n$ converges, but $\sum_{k=0}^{\infty} x_{n_k}$ diverges.

Problem 4. Let d be the metric on $X = [1, \infty)$ given by

$$d(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right|.$$

(You do NOT have to show d is a metric.) Show that (X, d) is not complete.

Problem 5. Let (x_n) be a bounded sequence in \mathbb{R} , and let $\ell = \limsup_n x_n$. Show that there exists a subsequence (x_{n_k}) that converges to ℓ .