Spring 2014 MAT 336 Exam 1

You have 1 hour. Answer 4 of the following 5 questions. If you answer all 5, your score will be determined by the best 4 solutions you provide.

Problem 1. Consider the set

$$
A=\left\{\left(1+x^{2}\right)^{-1} \mid x \in \mathbb{R}\right\}
$$

Find $\sup A$ and $\inf A$, and justify your answers.
Problem 2. Find the following limit:

$$
\lim _{n}[\log (n+3)-\log n] .
$$

Prove that your answer is correct.
Problem 3. Give a specific example of a sequence $\left(x_{n}\right)$ in \mathbb{R} and a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$, such that $\sum_{n=0}^{\infty} x_{n}$ converges, but $\sum_{k=0}^{\infty} x_{n_{k}}$ diverges.

Problem 4. Let d be the metric on $X=[1, \infty)$ given by

$$
d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|
$$

(You do NOT have to show d is a metric.) Show that (X, d) is not complete.
Problem 5. Let $\left(x_{n}\right)$ be a bounded sequence in \mathbb{R}, and let $\ell=\limsup { }_{n} x_{n}$. Show that there exists a subsequence $\left(x_{n_{k}}\right)$ that converges to ℓ.

