Spring 2014 MAT 336 Exam 2

You have 1 hour. Answer 4 of the following 5 questions. If you answer all 5, your score will be determined by the best 4 solutions you provide.

Problem 1. Give an example of a continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ and an open subset $U \subseteq \mathbb{R}^2$ such that $f(U) = \{f(x) \mid x \in \mathbb{R}^2\}$ is not open.

Problem 2. Show that $\ln(1 + x) \le x$ for any $x \ge 0$. Hint: One possibility is to find a way to apply the mean value theorem.

Problem 3. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, and suppose f is periodic, that is, there is some d > 0 such that f(x + d) = f(x) for all $x \in \mathbb{R}$. Show that f achieves its maximum value (more specifically, show there is some $x_0 \in \mathbb{R}$ such that $f(x_0) \ge f(x)$ for all $x \in \mathbb{R}$).

Problem 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies that

$$|f(x) - f(y)| \le (x - y)^2$$

for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

Problem 5. Consider the set $A = \{(x, \sin \frac{1}{x}) \in \mathbb{R}^2 \mid x > 0\} \subseteq \mathbb{R}^2$. Find all the limit points of A.