Spring 2014 MAT 336 Exam 2

You have 1 hour. Answer 4 of the following 5 questions. If you answer all 5, your score will be determined by the best 4 solutions you provide.

Problem 1. Give an example of a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an open subset $U \subseteq \mathbb{R}^{2}$ such that $f(U)=\left\{f(x) \mid x \in \mathbb{R}^{2}\right\}$ is not open.

Problem 2. Show that $\ln (1+x) \leq x$ for any $x \geq 0$. Hint: One possibility is to find a way to apply the mean value theorem.

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, and suppose f is periodic, that is, there is some $d>0$ such that $f(x+d)=f(x)$ for all $x \in \mathbb{R}$. Show that f achieves its maximum value (more specifically, show there is some $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right) \geq f(x)$ for all $\left.x \in \mathbb{R}\right)$.

Problem 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all $x, y \in \mathbb{R}$. Prove that f is a constant function.
Problem 5. Consider the set $A=\left\{\left.\left(x, \sin \frac{1}{x}\right) \in \mathbb{R}^{2} \right\rvert\, x>0\right\} \subseteq \mathbb{R}^{2}$. Find all the limit points of A.

