Spring 2014 MAT 336 Exam 2

These are the solutions to all the questions on Midterm 2.
Problem 1. Give an example of a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an open subset $U \subseteq \mathbb{R}^{2}$ such that $f(U)=\{f(x) \mid x \in U\}$ is not open.

Remark. There are many, many examples. Below, we run with the simplest. Solution. Let $f(x)=0$, and let $U=\mathbb{R}^{2}$ (which is open). The $f(U)=\{0\}$, which is not open (any open ball centered at 0 contains more than just 0).

Problem 2. Show that $\ln (1+x) \leq x$ for any $x \geq 0$. Hint: One possibility is to find a way to apply the mean value theorem.

Solution. We apply the mean value theorem to $f(x)=\ln (1+x)$, which is differentiable for all $x \in(-1, \infty)$. In particular, applying at $x_{0}=0$, we have

$$
\ln (1+x)=f(x)-f(0)=f^{\prime}\left(x^{\prime}\right) \cdot(x-0)
$$

for some $x^{\prime} \in[0, x]$. Noting that

$$
f^{\prime}\left(x^{\prime}\right)=\frac{1}{1+x^{\prime}} \in(0,1],
$$

we see that

$$
\ln (1+x)=\frac{1}{1+x^{\prime}} \cdot x \leq x
$$

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, and suppose f is periodic, that is, there is some $d>0$ such that $f(x+d)=f(x)$ for all $x \in \mathbb{R}$. Show that f achieves its maximum value (more specifically, show there is some $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right) \geq f(x)$ for all $\left.x \in \mathbb{R}\right)$.

Solution. Consider the restriction of f to $[0, d]$, i.e.,

$$
g:[0, d] \rightarrow \mathbb{R}, \quad g(x)=f(x)
$$

Since g is continuous and $[0, d]$ is compact (by the Heine-Borel theorem), g achieves its maximum at some $x_{0} \in[0, d]$.

Now, for any $x \in \mathbb{R}$, we can write $x=m d+x^{\prime}$, where $m \in \mathbb{Z}$ and $x^{\prime} \in[0, d)$. Thus, by the periodicity of f, we have that

$$
f(x)=f\left(x^{\prime}\right)=g\left(x^{\prime}\right) \leq g\left(x_{0}\right)=f\left(x_{0}\right) .
$$

In other words, f also achieves its maximum at x_{0} (as well as at $x_{0}+m d$).

Problem 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all $x, y \in \mathbb{R}$. Prove that f is a constant function.
Solution. Rearranging the above inequality, we see that

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq|x-y|, \quad x, y \in \mathbb{R}, \quad x \neq y
$$

Fixing y and taking limits $x \rightarrow y$ on both sides of the inequality yields

$$
\left|f^{\prime}(y)\right| \leq 0
$$

Since the above holds for all $y \in \mathbb{R}$, then f^{\prime} vanishes everywhere. As a result, (by the mean value theorem,) f is everywhere constant.

Problem 5. Consider the set $A=\left\{\left.\left(x, \sin \frac{1}{x}\right) \in \mathbb{R}^{2} \right\rvert\, x>0\right\} \subseteq \mathbb{R}^{2}$. Find all the limit points of A.

Solution. Clearly, every point $(x, y) \in A$ is a limit point of A (since the constant sequence $\left(x_{n}, y_{n}\right)=(x, y)$ trivially converges to $\left.(x, y)\right)$.

In addition, we claim that every point $(0, y)$, where $y \in[-1,1]$, is a limit point of A. Since \sin is periodic, there is a sequence x_{n} going to $+\infty$, with $\sin x_{n}=y$. Then, $\left(x_{n}^{-1}, \sin x_{n}\right)$ is a sequence in A which converges to $(0, y)$.

In fact, the set of limit points of A is precisely

$$
\bar{A}=A \cup\{(0, y) \mid y \in[-1,1]\}
$$

Remark. If you're feeling extra ambitious, you can also show that any point not in \bar{A}, as defined above, is not a limit point of A. For example, since for any sequence $\left(x_{n}, y_{n}\right) \in A$, we have that $x_{n}>0$ and that $\left|y_{n}\right| \leq 1$, it follows that (x, y) cannot be a limit point of A if either $x<0$ or if $|y|>1$.

Furthermore, for points $(x, y) \notin A$ satisfying $x>0$, we can use, for example, Exercise 5.3.I in the textbook (which was a homework problem) to find a ball $B((x, y), r)$ that avoids A. As a result, since (x, y) is of a positive distance from A, no sequence in A can approach (x, y).

The above cases combined cover all points not in \bar{A}.

