SOLUTIONS OF SELECTED EXERCISES IN T. TAO’S NONLINEAR
DISPERSIVE EQUATIONS

ARICK SHAO

This is a list of solutions to some of the exercises in the book Nonlinear Dispersive
Equations: Local and Global Analysis, by T. Tao. ' Many of the later problems (beginning
from Section 2.3) were done in collaboration with the Nonlinear Dispersive Equations
reading group (Jordan Bell, David Reiss, Kyle Thompson) at the University of Toronto.

CHAPTER 1: ORDINARY DIFFERENTIAL EQUATIONS
1.2. First of all, fixed points are unique, since if u, v € X are fixed points of @, then
d(u,v) = d(®u), d(v)) < cd(u,v),

which is only possible when d(u,v) = 0, i.e., u = v.
Next, fix any g € X, and define recursively u;,; = ®u;. By induction and the contrac-
tion mapping property, we have d(uy, uz1) < c*d(uo, u1), and hence for any m < n,
n—1 n—1 m
c"d(ug, uy)
At un) < ) g, ) < g, ur) Y ¢F < ===
-c
k=m k=m
In particular, {u} is a Cauchy sequence, so there is some u € X such that uy — u. Since
contraction mappings are clearly continuous (by the contraction property), then
O(u) = liin O(uy) = liin Uil = U,
and hence u is the fixed point of ®.
Finally, for any v € X, we define vy = v and vi4; = @y, as before. By continuity,

k=1
. . 1
d(v.u) = lim d(vo, vy) < hin; d(vi,vis1) < d(vo,v1) Z ¢' = 7= d(v.®()).

1.3. 2 Let A = Vd(xp). Since A is nonsingular by assumption, there exists A > 0 such that
2||A7"| < 1, with || - || denoting the operator norm.
Fix y € D, and define the map ¢, : D — D by

@) = x+ A7 [y - D).
Note that x is a fixed point of ¢, if and only if ®(x) = y. Taking the differential, we obtain
Vo, (x) = [ - A7'VO(x) = A™'[A - VO(x)].

By continuity, there exists a neighborhood U of xj such that ||A - V®(x)|| < A forall x € U.
Consequently, for any x € U, we have the bound

- 1
Ve, (0l < IA7MIA = V()| < 7

'See [5].
2The solution was obtained mostly from [3].
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It follows that ¢, is Lipschitz on U, with Lipschitz constant less than 1/2, i.e.,

1
loy(x1) = pp(x)l < §|x1 - X2, x1,x € U.

In particular, if ®(x;) = ®(x,), then ¢, (x1)—@,(x2) = X1 —x7, and hence 2|x; —x5| < |x1—x2],
1.€., X] = x». From this, we conclude that ® is one-to-one on U.

Next, fix any x; € U, let V. = ®(U), and let y; = ®(x;) € V. Choose r > 0 such that
B = B(xy, r) is contained in U. 3 If y € D is such that [y — y;| < Ar, then for any x € B,

1 _
ly(x) = x1] < 1oy (x) = @y(xD] + lepy(x1) — x1| < zlx = xol + A7 lly = yol < 7.

Therefore, ¢, maps from B into B. In particular, ¢,|B is a contraction mapping on the
complete metric space B, so that ¢, has a unique fixed point z € B. This implies that
®(z) =y, so that y € V. With this, we have now proved that V is open, and that @ is a
one-to-one mapping from U onto V.

Let¥ : V — U be the inverse of @. Lety,y + k € V, and define

x =¥(y), x+h=Y(Qy+k).
Since

1
lh— A7k = |h + A7 [®(x) — D(x + ]| = lgy(x + h) — @, (x)] < zlhl,
it follows that |/ < 2|A~'k| < A~!|k|. Moreover, since
1
I = A7 Vo) < AT A - VOl < 5 < 1

by all our previous assumptions, then A~'V®(x), and hence V®(x), is invertible.
Let S = Vd(x), and let T = S~'. A direct computation yields

[P +k) —Y@) - Tkl | -T[D(x+h)—D(x)— Sh]|
Ikl - Ikl

< 17| . |D(x + h) — D(x) — Shl

<7 7l .

The right-hand side goes to zero as |h| ~\, 0. Since we have proved this for arbitrary y and
y+k € V, then ¥ is differentiable on V, and V¥(y) = [VO(¥(y))]~". Since both ¥ and VO
are continuous, the above formula implies that V¥ is continuous, so that ¥ = o liscl.

1.4. We begin by generating a solution u € C'(I — D) using Theorem 1.7, and we proceed
by induction. Suppose u is C’ for [ < k. Then, d,u = F o uis C' as well, which implies that
u is C'*!. This iterative process continues until / = k, so that u is ck1, By definition, then
u € Ci+l(I - D), and the map S (1) is k times differentiable.

1.5. The Picard existence theorem generalizes directly to higher-order quasilinear ODE,
since these can be reformulated equivalently as first-order systems. Similarly, the Picard
existence theorem (and also the Cauchy-Kowalevski theorem) extends to non-autonomous
systems, since these can be equivalently formulated as autonomous systems.

3We let B(xo, r) denote the open ball of radius r about xp.
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1.6. The infinite iteration scheme described in the problem statement can collapse, since
the time intervals At; = t; — #;_1, i > 1, in each iteration step can become arbitrarily small,
depending on the growth of the solution at each step. For example, if

(o9
Z At; < o0,
i=1

then we have only a finite-time solution.

In particular, in the case of (1.6), we have |u(?)] = 1/(1 — t). Suppose we solve using
Picard iteration beginning at time 0 < 7y < 1. Let Q, as in the statement of Theorem 1.7,
be the ball B = B(0,2/(1 — ty)). In this case, F is given by F(u) = u?, so that

Flleoi g < .
1Flenscs) < 7=

4
(1 -1)*
(For the latter inequality, we have |F(u) — F(W)| < lu + v[ju — v| < (lu|l + [v)|u —v|.) As a
result, we only have local existence on a time interval T < min((1 — 1) (1=1) < 1—1to.
In particular, #y + T will always be smaller than 1, no matter the choice of #, resulting in

the qualitative description of the preceding paragraph.

IFllcocpy <

1.7. Assume u(ty) < v(y), and define the function

£(0) = [max(0,u() - v()P?
on [. Then, f is differentiable a.e., and when exists,

856 = {o o vozu,

2u(r) = vO) W' (1) = V') v(1) < u(D).

Since I is compact and F is Lipschitz, then when v(¢) < u(t), we have
10, f D)) < 2lu(t) = vOIIF (t, u(®) = F(t, v(O)] < lu(@) = v@)l.
This implies that |0, f(f)| < |f(#)] almost everywhere on I, so by Gronwall’s inequality, then
J(@) < f(to) exp[(t — 10)C]

for all t € I and for some constant C > 0. Since f(#)) = 0 by definition, then f(¢) = O for
all t € I. In other words, u(t) < v(¢) forall r € I.

Now, assume u(ty) < v(fp), let € > 0 be a small constant such that u(zy) + € < v(ty), and
define g(1) = [max(0, u(t) + € — v(¢))]* on I. Again, by differentiating g, we obtain

0 v(t) > u(t) + €,
0,8(1) = , ,
2w(t) + e = v(@)W' (1) = V' (1)) v(t) < u(t) + €.
Again recalling the Lipschitz property of F, we obtain for almost every ¢ € I that
10:g(0)] < lu(®) + € = vOIIF (&, u(t)) — F(t, v(1))|
< |u(@®) + € = vOllu(®) — v(@)|
< Ju(t) + € = (D)) + elu(t) — € — v(1)|
< €+ ulf) + € —v(n)P,
whenever u(f) + € > v(t). Thus, for some constant C > 0, independent of €, we have

d,8(f) < Cg(t) + C€, A [e € g(1)] < Ce 2,
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for almost every ¢ € I. Integrating the above yields the inequalities *

3
e Ce(1) < g(ty) + € f Ce s = (1 — e €1,

fo

g(1) < X(C) — 1),

Givent € I, if u(f) + € < v(t), then u(t) < v(¢) as desired, so there is nothing left to prove.
On the other hand, if u(#) + € > v(¢), then the definition of g and the above yield that

[u(®) + € = V() = () < €[ 1],
By choosing e which is small with respect to C(; — 1), > then the above implies
u(d) + € — (1) < % u(t) < u(t) + g < W().
1.8. With the notations of Theorem 1.10, let [#o, #;] = [0, 1], let A = 2, and define
B(t) = -1, u(t) =1, 0<t<1.
It is clear from computation that

i3
u(t)=132—t=A+fB(s)u(s)ds, 0<r<1.

fo

13
Aexp (f B(s)ds) =2¢7,
to

which is smaller than u(f) = 1 for ¢ sufficiently close to 1.
To reconcile this with Theorem 1.12, we observe that within the proof of Theorem 1.10,
we obtain the inequality

dit (A + f B(s)u(s)ds) < B(®®) (A + f B(s)u(s)) s

which reduces precisely to Theorem 1.12. However, if B is allowed to be negative, then

However, we have that

A+fB(s)u(s)ds

o

needs no longer be nonnegative, which violates the hypotheses of Theorem 1.12.

1.10. First, we apply the usual Picard theory to obtain a solution u : (T_,7,) — D to
(1.7) for which the interval of existence is maximal. We wish to show that T, = oo and
T_ = —oco. We need only show the former, since the latter then follows from inverting the
time variable. © Suppose now that T, < co; differentiating ||u(7)||*, we obtain

A(1 + lu(t)IP) = Du@), u(®) < IF @)@l < 1+ lu()II,

where in the last step, we applied the linear bound for F, along with Cauchy’s inequality.
Applying the differential Gronwall inequality, then we have

(1 +u@)]) < 1 + llugl®) < ™70 + luolP®), 1o <t < Ty,

for some constant C > 0. This contradicts Theorem 1.17, so that T, = oo.
Since solutions to (1.7) are unique due to Theorem 1.14, and since solutions have the
time translation invariance property (due to (1.7) being an autonomous system), then the

“4Note that here, we have implicitly derived a slightly more general form of the Gronwall inequality.
SRecall that C and ) — to are both independent of €.
6Deﬁning v(t) = u(—1), then 0;v(t) = —F(v(t)), and —F satisfies the same bounds hypothesized for F.



SOLUTIONS 5

solution maps obey the desired time translation invariance S, (f) = So(f — t). 7 That
S0(0) = id follows immediately by the definition of the solution map. By the uniqueness
of solutions (Theorem 1.14) and the above time translation invariance,
Sot)So(0) = S, = DS (1) = So(1).*
Finally, we observe that for any ¢,#" € R, say with # < #’, we have the bound
t’ t
llu(?') — u(@)ll < f IF ()l < f (1 + llu(s)Ihds < |t — 1| [1 + sup IIM(S)II}.

t t t'<s<t
It follows that the solution map is locally Lipschitz.
1.11. Suppose the solution curve u : (T-,7T,) — D be maximal. Recall that the Picard

theory implies |u(t)] — oo as t /' T,. Thus, when ¢ nears T, and hence u(¢) is large, we
have that |F(u(?))| < |u(?)|P, and therefore

Alu)l* < (Fu(t)), u(t)) < lu@)|’*',
2

pat|u(r>|1-1’ < P dudP < 1.

Integrating the above, we obtain

T+
@' = lu@|'? - lim u(s)' " 5, | ds=T, -t
s/T, '

Taking the above to the 1/(1 — p) power yields our desired lower bound for near 7. The
analogous lower bound near 7_ can be proved similarly.
To see that this blowup rate is sharp, consider the case O = R and the nonlinearity

Fuy=(p— 1" ul " u.

Consider this particular ODE, with initial condition ©#(0) = 1. A simple change of variables
yields the relation d;|u|'~” = —1, hence it has the explicit solution

W' —1=-1,  u@)=(1-1r.
Since u blows up at time 7, = 1, this is precisely the proved blowup rate.
Furthermore, if we take instead the initial condition u(0) = —1, then this has the explicit
solution |u|'? = (~1 — t). This blows up at T_ = —1 and has proved blowup rate.
1.12. Let g(r) = log(3 + |u(t)|?). Differentiating this yields the inequality
0ig(1) = B+ u@®P) ™ (F u)), u(r))
S G+ ) u®I(1 + lu(®)]) log(2 + [u(r)])
< Ju@l + (1)
3+ u@)P
< g().

The differential Gronwall inequality implies that g(7) < g(#p)e
the exponential of both sides of the above inequality

~log(3 + lu(n)*)

Ct=10) for some C > 0. Taking

£Cl=1g)

3+ u@dP < 3+ lu)?)* .

TBoth sides of the equality represent solving (1.7) forward for time ¢ — ¢y with the same initial data.
8The right-hand side represents solving (1.7) forward for time ¢, while the middle expression represents
solving (1.7) forward for time ¢, and then solving forward again with this new data by time ¢’ — 1.
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In particular, this implies the growth bound
lu(n)] < exp{Bexp[C(t - 1)1},

where B and C are some positive constants, with B depending on u(ty). As a result, by
Theorem 1.17, solutions to this ODE exist for all times.
To that see this bound is sharp, consider the equation

o = (1 +u)log(l + u), ul0)=e-1,
which has explicit solution 1 + u(r) = exp exp ¢. In particular, this solution satisfies

lu(?)| = expexp(r — 0).

1.13. First, by a direct calculation using the chain rule, we have
O[H ()] = (0u(t), dH(u(1))) = (F(u(®)), dH(u(1))) = Gu(1)H (u(?)).
As aresult, considering the nonnegative function f = H o u, we have

9, f(1) = (G o w)(®) f(2).

Since G o u is continuous, and since f(f) vanishes at some fy € I, then the differential
Gronwall inequality, applied at base point fy, shows that f = H o u vanishes everywhere.

Geometrically, if we interpret F' as being a vector field describing the evolution of u,
then the statement has the following interpretation: if the solution curve u(f) begins on the
level set H = 0, and if (F, dH) vanishes to first order in H on the level set H = 0, with the
ratio G being continuous, % then u(¢) remains everywhere on the level set H = 0.

1.21. We perform a standard bootstrap argument. Define the set
A = {t € Ilu(r) < 2A}.

Since #y € A, then A is nonempty. Moreover, since u is continuous, then A is closed.
Next, suppose ¢ € A, let M be the maximum value of F on the closed unit ball of radius
2A, and let € = A/2M. By our assumptions, we have the estimate

ut) <A+eFu) <A+eM < %A.

Since u is continuous, then A is open. Since / is connected, and since (A is nonempty,
closed, and open, then A = I, and hence u(r) < 2A forallt € I.

For counterexamples, suppose first that € is not small. Let A = 1, let F(v) = v, and take,
for instance, £ = 1. Then, the assumed inequality is u(¢) < 1 + u(f), which trivially holds.
Thus, u can be any positive continuous function on 7, and we have no uniform bound for u.

Next, we consider the case in which u is not continuous. Let A = 1, and let F(v) = 2,
so the assumed inequality is u(f) < 1 + &[u(t)]*>. Note that v < 1 + ev? holds for v < 1
and for sufficiently large v with respect to &, say v > C, > 2. Thus, we can construct the
discontinuous function u by fixing ¢y < #; € I and defining

() = {1 1<t

Ce t=1.

This function clearly satisfies u(ty) < 2A = 2 and the assumed inequality u(¢) < 1+&[u(t)]?,
but it is also not uniformly bounded by 2 = 2A.

9In particular, F is tangent to the level set H = 0, since dH as a vector field is normal to the level sets of H.
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1.22. From Young’s inequality, we have the bound
Bu(t)® = [2°BI[2%u(t)’] < (1 — )27 B + 627 u(y).

Plugging this into our assumed inequality for u, then we have

u(t) < 2[1 — 027 u() < 2A + 2(1 — 0)275 B™ + 2F (u(t)).
The desired result now follows from the above and from Exercise (1.21).
1.23. Consider an open ball U = B(ug, §) about 1 such that F is continuous on U. Then,
there is a sequence {F,, : U — R} of Lipschitz continuous functions such that F,, — F
uniformly. '° Since F,, — F uniformly, the F,,’s are uniformly bounded; in particular,

there is some M > 0 such that if u € U, then |F,,(«)| < M for all m.
We can now solve using the usual Picard theory for maximal solutions

Un : (T—,ma T+,m) - D, atum(t) = Fm(um(t))v um(tO) = Up.

The next goal is to show uniform control for the 7_,,’s, the T ,,’s, and the u,,’s.
Fix now a single m, and define the constant

Em = min(M) ™' 6, Ty — fo, 1o — T—p1).
For our bootstrap argument, we define
W, ={d € [0,&,) | lun(to + s) —ug| < 6 for all s € [-d,d]}.

By definition, 0 € U,,,, and U,,, is closed. Furthermore if d € U,,, then

to+d 1

|y (to £ d) — upl < f |[Fn(uy(s))lds < g, M < 56’
o

and by continuity, it follows that a neighborhood of d in [0, &,,) is contained in 2,,,. There-
fore, U,, is open, so by connectedness, then 2, = I. Since the above holds for any arbitrary

m, then we have shown that u,,,(f) € U whenever |t — ty| < &,.
Combining the above argument with Theorem 1.17, we see that

em=02M) "'6=¢,  [to—&to+& S (T_p.Tim)

for every m. 1 This establishes the desired uniform bounds on the T_,’sand T, ,’s. The
preceding bootstrap argument also yields uniform bounds for all the u,,’s on [#) — &, #) + £].
Furthermore, we have the uniform bounds

O] < |Fin(um(@) < M, |t — 10| <&,

so the u,,’s are uniformly Lipschitz and hence equicontinuous on this interval. By the
Arzela-Ascoli theorem and the above bootstrap bound, restricting to a subsequence, then
the u,,’s converge uniformly to a continuous function

u:lty—etyg+el - D, [lu — upllo <

NS

Since u,,(t) — u(t) and u,,(ty) — u(ty), then we have

u(t) = u(ty) + f F(u(s))ds + limf [F o (um(s)) — F(u(s))] = u(ty) + f F(u(s))ds.

10For example, this can be easily proved using the Stone-Weierstrass theorem.
MIf, say, Ty — to < (2M)71s, then the bootstrap bound implies that u(f) is uniformly bounded for all
t € [to, T+ ), which by Theorem 1.17 contradicts the maximality of T .
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In particular, the limit of the integral vanishes by the dominated convergence theorem,
since we have the crude bound |F,,(u,,(s)) — F(u(s))| < 2M. Finally, by Lemma 1.3, then u
is a classical solution to the original ODE.

1.27. Correction: We also require the following orthogonality condition for J: !?
Ju, Jv)y = (u,v), u,veD.
Without this condition, w can fail to be antisymmetric. For example, if
D=R> e =(1,0, e=(01),

then we can define Je; = 2e, and Je, = —%el, so that
1 1
w(er,er) = —5(61,60 =3 w(es, e1) = ez, e2) = 2.

With the above condition, first note that w is indeed antisymmetric, since
wv,u) = (Ju,v) = (Jzu, Jvy = —(u, Jv) = —w(u, v).
To show bilinearity, we need only show linearity in the first variable: >
w(auy + buy,v) = {auy + buy, Jv) = aluy, Jv) + b{uy, Jv) = aw(uy,v) + bw(uy, v).

For nondegeneracy, given u € D \ {0}, then (u, u) > 0, so that w(u, Ju) = —(u,u) # 0. As a
result, w is a symplectic form.
Finally, to see that V,H = JVH, '* we note that for any v € D,

w(JVH,v) =(JVH, Jv) = (VH,v).
1.28. We induct on the dimension n of D. First of all, the desired statement is trivial for
dimension n = 0. Fix now n > 0, and suppose the conclusion is true for any dimension
strictly less than n. Then, we need only prove the same conclusion for dimension 7.

Letu € D\ {0}. Since w is nondegenerate, there is some v € D such that w(u,v) = 1. 15
In addition, the restriction wy of w to the subspace Dy = spanfu, v} is du A dv, i.e.,

w(aiu + byv,aru + byv) = a1by — apb;.
Consider next the symplectic complement
D' ={w € Dlw(u,w) = w(v,w) = 0}.

Since w is nondegenerate, then the linear functionals w, = w(u,-) and w, = w(v,-) map
onto R, so that their nullspaces satisfy

dim N(w,) = dim N(w,) =n - 1.
Furthermore, since w,-, is nontrivial as well, then N(w,) and N(w,) cannot completely
coincide, and it follows that
dim D’ = dim[N(w,) N N(w,)] = n - 2.

By the induction hypothesis, then the restriction «’ to 9’ has the desired standard decom-
position in some coordinates p; and g;, where 1 < j < n/2 — 1. In other words,

W = Z (dg; Ndp)).

j<n=2
1<i<™5

12This may already have been covered by the condition that J is an endomorphism of D.
13Linearity in the second variable follows immediately from the antisymmetry of w.
14Although the book asserts V,,H = —JVH, the minus sign should not be present here.
151 particular, n > 2.
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In particular, both 9’ and D have even dimension. Since O’ and Dy are by definition
w-orthogonal, then w in fact also has this form:

w= ) (dq;ndpj)+dundv.

=2
I<i<*3=

1.30. Suppose u satisfies a Hamiltonian equation, with Hamiltonian H. We make the
change of variables v(f) = u(—f). By the chain rule,

(1) = =V, ,Hu(-1) = =V, ,H((1)),
and hence v also satisfies a Hamiltonian equation, with Hamiltonian —H.
1.31. We can define a natural product (-, -)pxg and symplectic form w @ w’ on D X D’ by
((u,t), W,V D oxp = (U, v)p + W',V )y,
(W ), 1), (v,V)) = w(u,v) + ' @', V).
Define the Hamiltonion H @ H' € C*(D x 9 — R) by
(Ho H')(u,u') = Hu) + H ).
A standard calculation yields that its differential is
dHe® H)u,u’") = (dH(u),dH' (1)) e DX D,
so that
<d(H @ H’)(u, u/), (V’ v’))DXD' = <dH(u)s V>D + <dH’(M,), V’>D'
= w(VoHW),v) + &' (Vo H' W), V")
= (w® W )(VuH@W),Vy H W), (v,V)).
As aresult,
VwEBw’(H 5] H/)(Lt, Lt’) = (VwH(M), Vw’ H/(u,))7
and hence u and «’, as given in the problem, satisfy
O(u(t), ' (1)) = (Vo Hu(®)), Vo H' (U (1)) = Voo (H & H')(u(t), u'(t)).
1.32. Let dim D = 2n, and let p;, q;, where 1 < i < n, denote the standard coordinates for
the symplectic space (D, w); see Example (1.27) and Exercise (1.28).

First, suppose u € C*(R xR xR — D), such that u(, x, y) is a solution curve for the
Hamiltonian equation for H for every x,y € R, i.e., that

Oau(t, x,y) = Vo H(u(t, x,y)), t,x,y €R.
By a direct computation, we have
O[w(0u(t, x,y), Oyu(t, x,¥))] = w(0,0:u(t, x,y), dyu(t, x,¥)) + w(Oxu(t, x,y), 0y0:u(t, x,y))
= w(0, Vo Hu(t, x,y)), Oyu(t, x,y))
+ w(0.u(t, x,y), 0,V ,H(u(t, x,y))),

where in the first equality, one can justify the Leibniz rule for 9, by expanding w in terms
of the ¢;’s and p;’s. By the bilinearity properties of w, along with the definition of V,, then

Orlw(xut, x,y), Oyu(t, x, y))] = (Oc[dH (u(t, x, y))], dyu(t, x,y))
— 0.u(t, x,y), Oy[dH (u(t, x, y)])
= (V2H(u(t, x, p)[0u(t, x, y)], dyut, X, y))
—(u(t, x,y), VH(u(t, x, y)[0yut, x, y)]),
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where in the last step, we simply applied the chain rule. Treating the Hessian V>H of H at
u(t, x,y) as a bilinear map, then the above becomes
Oilw(@.u(t, x,y), Oyu(t, x, )] = VH(u(t, x, ) [Bxu(t, x,y), dyu(t, x, )]
= V2H(u(t, x, y)[0yu(t, x, y), d.ua(t, %, )],
which of course vanishes. As a result, w(d.u(t, x,y), Oyu(t, x,y)) is conserved in time.

Furthermore, in the quadratic growth case, in which V2H is bounded, then from the
discussions after Example (1.28), we know that the H-Hamiltonian equation always has
global solutions. Thus, the solution maps S (¢) are always well-defined for all ¢ € R.

Elaboration: To show that the solution maps are symplectomorphisms, we must first
provide some additional background detailing how this symplectic form w is preserved by
the Hamiltonian evolution. Consider the vector space D as a 2n-dimensional real manifold;
recall that each tangent space T, D, where x € D, can be identified with D. 16 Then, we
can impose a symplectic form @ on the manifold D such that at each T, D, the bilinear
form @l|, is identified with w according to the above identification of 7D and D.

For any r € R, the pullback S (r)*@ of & through the solution map S (¢) defines a differ-
ential form on (the manifold) 9. Our goal is to show that S (¢)*® = @. Let X, Y be arbitrary
vector fields on D, with coordinate decompositions X = X?d, and Y = Y#d with respect
to the standard coordinates. Define also the map

u:Rx9D - D, u(t,x) = S(H)x.
Letting dS (¢) denote the standard differential map of S (¢), then we can compute
SO @X,Y) = &([dS ()]X, [dS (1)]Y) = XTYF - @(0a(y” © S (1)dy, Bp(° 0 S (1))ds),

where the y”’s represent the standard coordinate functions p; and ¢;. Recalling the point-
wise identification between @ and w, then we have

SO DX, V)lx = X YPw(@a(S (%), (S (1)y)) = X YPw(Bou(t, x), pult, x)).
From our conservation property for w and u, proved in the beginning of this exercise, then
S @(X, V)l = X*YPw(8,u(0, x), 05u(0, x)) = S (0)*'@(X, Y) = &(X, Y).

The second to last step follows from the same computations and identifications as before,
and the last step is simply because S (0) is the identity map. As a result, we have shown
that S (¢) is indeed a symplectomorphism, as desired.

1.33. Consider the Liouville measure on 9 defined by the top form

m~w'=wA---Aw (ntimes),

m(Q)sz”.
Q

Our goal is to show that m(S (r)(Q2)) is the same as m(Q) for any Lebesgue measurable
Q € D. By a change of variables, we have

@)= [ o= [ sere,
S()(Q) Q
By Exercise (1.32) and standard properties of pullback forms, then

SO =[SO w]" =",

that is, the measure defined

16The component vectors g;, p; € D are identified with the tangent vectors dy,|x,dp /.Ix € T, D, respectively.
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and it follows that
m(S (1)(Q)) = f w" = m(Q).
Finally, since H is conserved by the solutioﬁ map, then for any 7 € R,
S [e P W] = e PHSOIG (1) o = g PHS Ol — gBH 1
As aresult, letting dug = e P dm denote the Gibbs measure, we have

dug(S (1)(Q)) = f ePHY" = f SO [ePHw] = f e PR = dug(Q).
(H(Q) Q Q

S
1.35. For the Jacobi identity, we break down into “standard” coordinates

G1s- s Gns P1s- > Pu)s n=dimD,

described in Exercise 1.28. From computations in Example 1.27, we see that

{H1,{H>, H3}} = Z(aq,Hlapj{HZ’H\?} = 0p,H10,{H>, H3})

J=1

= Z Z(aq.lean - anHlaq.f)(a%Hzale3 — 0y, H204,H3)
=1 =1

= Z(aQJH16Pf41H26p1H3 + aqulaquZBPfP1H3)

Jil=1

n
= " g, H 8y, Hady Hy + 8, H1 0y, HaDp g, H)
Jl=1

n
- Z(ap/Hléqjq,Hzﬁ,,,H3 + ap/.H]aq/Hzaqij‘h)
Jil=1

n
+ >0y, H18g,p HaBg Hy + 8, Hy 3, Hodlg g, Hy).
jil=1

The brackets {H,, {H3, H,}} and {H3,{H,, H»}} have similar expansions, but with the H;’s
permuted. Summing these expansions, we can see that all the individual terms cancel.
Next, for the Leibnitz rule, we first note that

(d(H Hy)(u), vy = Hi(u){dH>(u), v) + Hy(dH,(u), v)
= w(H () Vo Hy (), v) + w(Ha )V o, Hy (1), v).

In other words, the symplectic gradient satisfies the product rule:
V.(H Hy) = HiV,H, + H,V H;.
As a result, we can compute as desired
{H,,H,H3} = w(V,H,,V,Hy)H; + w(V,H,V ,H3)H,
= {H\, H2}H5 + Hy{Hy, H3}.
1.36. We can compute this using the Jacobi identity from Exercise 1.35:

[DH|’DH2]E = {Hlv{stE}} - {HZ’ {HlvE}} = _{E7 {HI’HZ}} = D{H],HZ]E'
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1.37. First of all, if E and H do not Poisson commute, then by the identity (1.33), there is
a solution curve u to (1.28) for which (E o u)’ = {E, H} o u has constant nonzero sign on
some small interval [f, #;]. As aresult, E(u(t;)) — E(u(ty)) is nonzero, but the integral

il
f Gu)0u(t) — V,H(u®))]dt
o
vanishes for any G € Cg}c(l) — D), so that E cannot be an integral of motion.

On the other hand, if E and H do Poisson commute, then on any interval [#, ¢, ], and for
any C' curve u : [ty,t;] — D, we have the identity

Eu(t) - Eu(to) = f (E 0wy (tdt
- f (dE@(®), du(t)di

= f KdEu(n), ,u(t) = Vo Hu(®))) + (dE(u(1)), Vo, Hu(n))]dt

11

=fl(dE(u(t)),c')tu(t)—VwH(u(t)))dt+f (E, H}(u(t))dt.

Iy to
By our assumption, the last term on the right-hand side vanishes, and it follows that E is
indeed an integral of motion of (1.28).

1.42. We consider the symplectic space (D, @), where !’
D=RXRXD,  a(qi,p1,u1)(q2, p2,u2)) = 1p2 = P1qa + w(uy, ua).
A quick computation shows that the @-symplectic gradient is given by
Vof = @pf.~04f . Vuuf).  fECUD > R).

In the above, p, g, and u refer to the first, second, and third arguments of f, respectively,
while V,, , f refers to the w-symplectic gradient of f with respect to the u-variable.
Consider the time-dependent Hamiltonian and the associated Hamiltonian equation

HeC'RxD —R),  du) =V, Ht u®),

where in the above, “V, ,H” refers to the w-symplectic gradient with respect to the second
argument of H. Consider the following time-independent Hamiltonian on D:

HeC'(D—>R), H(g pu) = H(qgu)+p.
A quick computation shows that
VoH(q, pu) = (1,-0,H(q, u), V,uH(q, u)).

We can now consider the (time-independent) Hamiltonian equation

q(®) 1
0, {P(t) =| 0,H(q(t), u(1)) ‘, (q(to), p(to), u(to)) = (to, 0, up) € D.
u(t) ViuoH(q(t), u(?))

where (¢, p,u) € C'(R — D). We can immediately solve the above for ¢, which yields
q(t) = t. As aresult, then u solves the time-dependent Hamiltonian equation

Ou(t) = Vo H(t, u(?)).

7In other words, we define & by combining w with the symplectic form in Example (1.27).
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Thus, the above time-dependent Hamiltonian setting can be reformulated as an equivalent
time-independent Hamiltonian setting. Furthermore, note that p satisfies

pt) = —f 0,H(q(s), u(s))ds = —f 04H(s, u(s))ds.

For such a time-dependent Hamiltonian H, the associated Hamiltonian equation needs
not preserve H. For example, if H(¢, u) = t, then we have the equation
Ou(t) =V, ot =0, u(tp) = uo,
which has trivial solution u(t) = uy. However, H fails to be constant in time, since
H(t,u(®) = H(t,up) = t.

However, by the time-independent Hamiltonian theory, then H is preserved by solution
curves of the H-Hamiltonian equation. Thus, a substitute quantity for the time-dependent
H-Hamiltonian equation that is preserved by its solution curves is

H(g(), p(t), (1)) = H(t,u(t) + p(t) = H(t, u(1) - f 9,H (s, u(s))ds.

1.44. With H defined in terms of L as above, we can first compute the partial derivatives
of H. First of all, g is by definition a function of both p and g, so that

g H(g.p) = Y By dj p)) — g Lq.q) ~ ¥ 33, L(q.0) - Dy
j=1 j=1

= 39445 [p; — 04, L(q. D] - 8y, L(q. §)
j=1
= _aq:'L(q’ Q)

In the last step, we applied (1.37). By a similar computation, we also have
0, H(g,p) = i + Z 0pqj-Pj— Z 004 - 04,L(q, Q) = Gi-
=1 =1

Thus, the Hamiltonian equation is

0,qi(t) = 0, H(q(®), p(1) = 4i(1),  9ypi(1) = =04, H(q(1), p(1)) = 0q,L(q(1), 4(1)).

Now, fix a curve ¢ € C*(I — R") as in the problem statement. In addition, we define
the “momentum” curve p € C*(I — R") as in (1.37):

pi(0) = 94,L(4(1), 0,g(1)).

Note that in this setup, the first Hamiltonian is trivially satisfied.
Consider now a variation g + v, with ¢ sufficiently small, and with v € C*(I — R")
vanishing at the endpoints of /. Then, we can compute

d d
e S(q®) + ev(®))le=0 = — fL(q(t) + &v(t), 0:q(t) + £0,v(1))dt| =0
e de J;

= Z f[ﬁqu(Q(t), 0:q(1)) - V(1) + 04, L(q(1), 0,q(1)) - 9,v(1)]dt
i=1 Y1

= 2" [10u 24481000 -0+ i) O
i=1
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= fZ[_atpi(t) + 0,4, L(q(1), 0,q(1)] - v(t)dt,
131

where in the last step, we integrated by parts to treat the derivative d,v(f). Since ¢ is a
critical point of the Lagrangian if and only if the left-hand side vanishes for all such curves
v, then by the above computation, this happens if and only if

9:pi(1) = 04,L(q(0), Byq(1)), 1 <i<n.

This is precisely the remaining half of the Hamiltonian equation.

1.45. Consider a variation (¢ + &v, p + ew) of (g, p), where £ > 0 is small, and where
v,w € C*(I — R") vanish on the endpoints of /. Defining S to be the variation

d
S= e S (q() + ev(?), p(t) + ew(t))le=0,
&

then we can compute

d
S= e fl [0:q9(t) + £0,v(D][p(t) + ew()] — H(q(t) + ev(t), p(t) + ew(t))dt] =0
= f [0:q(DW (D) + p(D)O (1) — v(2) - V H(q(1), p(2)) — w(t) - V,H(q(t), p(1))]dt
1

= jl‘ (01q(1) =V, H(q(0), p(1)), =0, p(1) — V4H(q(1), p(1))) - (W(2), v(1))dt,

where in the last step, we handled the derivative d,v(¢) by integrating by parts. Therefore,
(g, p) is a critical point of this Lagrangian if and only if the above vanishes for all such v
and w. This happens if and only if the Hamiltonian equations for (g, p):

9,qi(1) = 0, H(q(), p(1)),  O,pi(t) = =05, H(q(D), p(1)), 1<i<n

This is essentially the inverse to Exercise 1.44. Both exercises assert that one has a crit-
ical point with respect to a Lagrangian if and only if the associated Hamiltonian equations
hold. The difference is that Exercise 1.44 states this with respect to L, g, and ¢ = d,q,
while Exercise 1.45 states this in terms of H, ¢, and p. In particular, this demonstrates the
invertible relationships between p and ¢ and between H and L:

Pj=04(q,9); qj = 0p,H(q, p),
H(g,p)=q-p-Lq. 9, Lg.9=4¢-p-Hlg,p).

1.46. Suppose x is a maximal solution for (1.39), defined on the interval I = (T_,T,),
which contains #y) = 0. Since V > 0, then for any ¢ € I, we have

|0:x(2)] £ V2E(t) = J2E(0) < oo.
Here, we recalled that the energy E(¢), defined in (1.40), is conserved. 18 Moreover,
[x(0)] < [x(0)] + [#] sup [8;x(s)| < [x(0)] + ] 2E(0) < oo, tel
sel
Thus, by Theorem 1.17, we have T, = +o0, i.e., xis a C? global solution.

Next, suppose x(#y) = 0 for some #y € R, and suppose x(¢;) = 0 for some #; # ty. Since
|x[? is convex (see Example 1.31), then we obtain for any 0 < @ < 1 that

Ix(aty + (1 — )t < alx(to)* + (1 — @)lx(t)* = 0.

183¢e the proof of Proposition 1.24.
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Thus, x vanishes for all times between f, and ¢;, and by uniqueness, x = 0 everywhere. As
a result, if x does not vanish everywhere, then x can hit zero at at most one point f.
Finally, suppose x(#y) = 0 for some 7, € R, and let
X OF x(0) - VV(x(0)) x(1)
P(r) = - =0,
[x(2)] 1x(2)] (1)

for any r € R \ {fy}. '° By the fundamental theorem of calculus, for large R > 0,

'(%JC(I)] =0,0(1),

+& R

R f)—&
f P()drt + f P(t)dt + Q(tg + &) — Q(ty — &) = Q(R) — Q(—R).

Since V is radially decreasing, then P > 0, and hence

R fg—&
f P(tdt + f P(t)dt + Oty + €) — Oty — &) < 2 sup |Q(s)| < 2 V2E.
I - seR

+& R
As the above holds uniformly for all R, then letting R ,”* oo yields
f P(Hdt + Q(ty + &) — O(tg — &) <2 V2E.
R\(to—e&.,to+€)

It remains to compute the limits of Q(¢) as ¢ — 1. First, we have

x(@)-0x(t) .. |t—to]| x(2) _
lim ol lim 0| —n 0:x(t) = |0;x(2)|.
An analogous calculation yields
x(t) - 0px(t) t—to| x(0) a
Ao Rt ] el s, 9,x(t) = —|0,x(7).

As aresult, letting £ N\ 0 in the previous inequality, we obtain as desired
fP(t)dt + 2|0:x(tp)| <2 V2E.
R

1.49. Define the map
¢:B,— S, ©(v) = ujin + DN(v).
Note that v € B, solves (1.50) if and only if v is a fixed point of ¢. If v € B,, then
£ e 1
leMlls < lluiinlls + IDNWlls < 5 + GolING) = NO)lly < 5 + Slv - Olls < &.
hence ¢ maps B, into itself. Next, ¢ is a contraction mapping, since for any u, v € By,
1
lle() = ¢W)lls = IDN@) = DNW)lly < CollN () = NW)lly < 5llu = viis.

Since B is a closed subset of S, it is a complete metric space. By the contraction mapping
theorem, ¢ has a unique fixed point u € B, which is the unique solution in B, to (1.50).
Lastly, let u,v € B, denote two solutions to (1.50), with their respective “linear parts”
denoted by ujin, Viin € Bej2. Then, by our assumptions, we have the estimate
1
llu = vlls < lletiin = inlls + [IDN() = DNO)lls < llttin = Vills + 5[l = vils.
Rearranging the terms, we obtain

1
§||M — Vs £ llgin = viinlls, [lu = vils < 2|ltin — Viinlls-

19gee Example 1.32 for details behind this computation.
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The desired Lipschitz estimate for the “solution map” u;, +— u follows. Applying the
above estimate to the special case v = vj;, = O (the trivial solution) yields
llulls < 2lluginlls-
1.50. Since u = uy;, + DN(u), then
it —u= DN(it) — DN(u) + e.
As aresult, by (1.51) and (1.52),
. . L
llit — ulls < llells + [IDN (@) — DN(u)lls < llells + Ellu — ulls.
The desired estimate follows.

1.51. Correction: The correct assumption needed for € is

k=1 _ 1
2kCoC,
We begin by using the triangle inequality and expanding
IN@) = NOWlIv < [INk(u = v, 0,y + INe, w = v, )l

+ o+ |INey v, u = V) N
< Cillu = llslulls" + MIsllulls > + - - + VIS
< kCi lu—vlis.
Thus, if the above assumption for € holds, then
ING) = Nl < 50l = v
1.52. We reduce the second-order ODEs, both homogeneous and nonhomogeneous, to an
equivalent first-order systems by setting v = d;u. In other words, we consider the system
ou=v, 0v=~Lu+f, u(ty) = ug, v(ty) = uy.
If we define the linear operator
L:DxD - DxD, L(u,v) = (v, Lu)

and the map

FiR>DxD, f=(0,f),
then we can rewrite the above system as
0w, v) = L, vy + f,  (u,v)(t0) = (g, ur).
First, consider the linear case f = 0 (i.e., f = 0), from which we have
@, )(0) = e (g, ).
Taking the first component of the above, then we see that there exist operators
U :RxXD - D, i€ {0,1},
such that
u(t) = Uy(t — to)ug + Uy (t — to)u;.
More specifically, if we expand exp(zL) as a 2 X 2 matrix
[Cln(l) a1z(l)}
ax (1) axn(@)|’
then Uy(t) = a;,(¢) and U (¢) = a»().
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Next, for general f, then Duhamel’s principle (Proposition 1.35) yields

(u, v)(1) = "L, uy) + f 9L, f)ds.

fo

Projecting to the first component, and with Uy and U, as before, we obtain

u(t) = Uy(t — to)ug + Uq(t — to)uy + f Ui(t - s)f(s)ds.

fo

1.54. First, we take a derivative of ||u(¢)||> in order to obtain the inequality
Ol = 24D, u) = 2(Lu, uy < =20 |ju(@)]F.

Applying the differential form of the Gronwall inequality, we have

!
lu®I* < lu(O)II* exp (—2 f m) = e *"||u(0)|*.
0
The desired inequality follows immediately.

1.57. Correction: In contrast to the problem statement, the ODE for ¢ we wish to solve is

0p(t) = —Pw(®)p(n),  $(to) = ¢o.

In particular, note the change in sign in the right-hand side of the ODE.
First, a solution ¢ exists, as it can be given explicitly using matrix exponentials:

$(1) = exp [—f P(M(S))dS]'¢o~

This solution is also unique, since if ¢ and ¢ are both solutions, with the same initial
condition ¢ at time %y, then their difference a = ¥ — ¢ satisfies

0:a(t) = —Pu(®))a(t), a(ty) = 0.
From this, we immediately obtain the estimate
eI = —2APu®)a(b), a(t)y < 2|Put)la(r),

and Gronwall’s inequality ensures that a vanishes for all time.
Consider now the curve

1= v(t) = Lu())¢(t) — Ap(1)

in H, and note first that v(¢y) = 0. Differentiating this curve and recalling both the above
ODE and the definition of Lax pairs, we have

Ov(t) = O,[L(u(®)] - ¢(2) + [L(u()) — 210,¢(1)
= (LP — PL — LP + AP)|,»¢(t) = —P(u(2))v(1).
In other words, v satisfies the ODE in the previous paragraph, with vanishing initial data.

Therefore, v vanishes everywhere as well by the previous argument. In particular, this
shows that the spectrum o-(L) of L is an invariant of the flow (1.57) of u.
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CHAPTER 2: CONSTANT COEFFICIENT LINEAR DISPERSIVE EQUATIONS

2.1. Let z = (21,22, 23,24) € V. The commutation relations are brute force calculations:
0.0 _ 1 o1, _ 1
Yvz= 2(21,22,23,14)7 Yvyz= 2(24,23,22,21),
0.2 _ 1! 0.3 _ 1
Yvz= Z(—Z4,Z3,—Z2,Z1), Yvz= Z(Z3’_Z4’Z1’_Z2)’

1
1.0 11
Yvyz= ;(—24,—23, —22,—Z21), vy z2=(=21,-22, 23, ~24),

Y'Yz =i(-z1, 2,23, ), Y'v'z= (2. 21,2, —23),
Y'Y’z = —E(Z4, ~23,22, =21)s YyY'z =i, —2. 23 —2),
YY’z = (—21,—22, —23, —24), Vy'z = i(-z2, —21,~ 24, —23),
Y'Yz = %(—13,14, -21,22), Yy'z= (~z. 21, -2, 23),
Y'Yz =iz, 21,2, 23), Y'Y’z = (=21, 22, ~23, ~24)-

As a result, we can check every possibility for (y*y? + y#y®)z:

2
@Y’ +9°Y")z = =% Y +y'Yz=0

(,y(),y2 + ,yZ,y())Z — 0, (,yO,y?) + 7370)1 =0
Y Y Yz=-2 Y+ Y)z=0
o'y +¥yhz=0, Y+ v = -2z,
Y +¥y)z=0, Y +yy)z=-2

To see the symmetry of the y*’s, we let w = (wy, wp, w3, wy) € V as well. Then,
1 1 _ _ _ _
oz w} = ;{(21,22, =23, =24), (W1, W2, w3, wy)} = E(ZIWI + oWy + Z3W3 + Z4Wa),

1 1
0 _ _ _ _
{z,y'w} = E{(ZI’Z2’23’Z4)’ (Wi, wa, —w3, —wy)} = ;(ZIWI + oW + Z3W3 + 2aWs),

1

{y 2wt = {(z4, 23, =22, —21), (W1, W, W3, Wa)} = (2aW1 + 23W2 + 22W3 + 21 W),

{zoy wl ={(z1, 22, 23, 24), (Wa, w3, —w2, —w1)} = (21 W4 + 22W3 + 23W2 + 24W1),
{72Z3W} = i{(—24, 23, 22, =21), (W1, W2, W3, Wa)} = i(—24W + Z3W2 — 22W3 + 21 W),
{2, 7w} = —i{(21, 22, 23, 24), (=W, W3, W, =W1)} = —i(=21 W4 + 22W3 — 2312 + 24W1),
Wz, wh = {(z3, —24, =21, 22), (W1, wa, w3, wa)} = (231 — 242 + 213 — 22W4),

{27’ W} = {(21, 22,23, 24), (W3, —wa, =1, W)} = (21W3 — 224 + 231 — 24W2).

Direct inspection of the above formulas establishes symmetry. In particular, note that
{27 ="l 2 0.
To show the final positivity property, we painfully expand expressions. First,
(22 = (af + | = 12 ~ P
= lail* + laal* + [zl + |zl + 2021 Pleal® = 2021 Plesl

2 2 2 2 2 2 2 2
= 2|z1%|z4l” = 2lz2l"1zal” = 2lz2l|z4l” + 2lz3|7|z4l"
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Next, since yoz = c(—21, —22, 23, 24), then
~(2.7° 2z v02) = (2l + |2+l + 2,
=lal* + Il + lasl* + lzal* + 201 Pla + 2021 Plesf
+ 20z1Plzal® + 20z2Plzs + 2lz2Plzal? + 21z Plzal.

Moreover, since the remaining y;’s are identical to the ¥"s, then 20

2.y Moz} = —(mZ1 + 237 + 2273 + 2124)° = —4[R(@1Z + 30)]° = —A%,

2.V’ z y22) = —(—2421 + 3% — 2273 + 112)” = —4[3(01Z + 132)]) = -B,

2.V’ N v32) = —(21Z3 — 222 + 2321 — 24Z2)” = 4[R2z — 22)]) = -C7,
Combining all the above, then we must show

Az Pzl + 4P les + 4z Plasl® + dfzaPlzal’ — A - B2 = C* > 0.
By a direct calculation while tracking cancellations, then
~A? = B? = ~dluz + 5350 = ~4a Pl - 4alll - 8R(2iz2232),
—C? = ~4[R@ ) - 4R + 8R(212)R(22).
Since
R(ab) = Ra - Rb — Ja - 3b
for all a, b € C, then applying Cauchy’s inequality yields
~A? = B = C* = ~4aiPlal - 4zsPlal - 4R@2)P - 4R @) +83(2123)3(22)
> 4z Plzal® - 4lzslleal” — 4[R(2123)) - 4[R(2220)]
— 43 ) - 432z
= 421 Plzal? — 4zl Il — Az Plesl — 4z leal.
This completes the proof of the timelike property.
2.2. First, taking a time derivative of the Maxwell equations yields
PE =V, x0B=-"V xV, X E = *[AE -V, E)] = c’A\E,
#B=-V,xE =~V xV,xB=c[AB—-VV,-B)] =AB,

Thus, all components of E and B satisfy the wave equation. Next, for the abelian Yang-
Mills equations, we take a spacetime divergence of the second equation in (2.6) to obtain

0= 60(9&Fﬁ7 + (‘)"QgFW + aaayFw,; = DFﬁy - (‘)ﬁ(a"Fay) + &Y(a"Faﬁ) = DFﬁy.

In particular, the spacetime divergence of F vanishes due to the first equation in (2.6).
Correction: In order to show that a solution

Ace C?:x(Rler - Rler)

of the wave equation can also be reformulated as a solution of the abelian Yang-Mills
equations, we must assume in addition the Lorenz gauge condition

0“A, =0.
With A as above, we define the “curvature” two-form
Faﬂ = 6(,145 - (95A(,

20Hfere, % and 3 refer to the real and imaginary components, respectively.
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A direct computation now yields
0"Fop = OAp — 0p0°A, = 0.
Furthermore, the definition of F yields the Bianchi identities:
0aFpy + 0gF g + 0y Fop = 0,0A, — 000,Ag + 0g0yAq — 000 A, + 0,0,A5 — 0,03A, = 0.

Thus, F satisfies the abelian Yang-Mills equations.
We now restrict ourselves to the case d = 3. To see that the Maxwell equations are
a special case of the abelian Yang-Mills equations, we let F' be a solution of the abelian
Yang-Mills equations, and we define E and H in terms of F by
Ey = Fho, E; = Fy, E5 = F3,
Hy = Fy, Hy = F3, Hs = Fya.
From the first equation in (2.6), we can compute that
0= 31F10 + 62F20 + 63F30 =V, E,
0= aOF()l + 32F21 + (93F31 = C_ZatEl - (Vx X H)q,
0= 60F02 + 61F12 + (93F32 = C_zath — (V. X H),,
0= 60F()3 + 61F13 + (92F23 = C_25tE3 —(V, X H);.
Similarly, for the second equation in (2.6), we can compute
0= (90F12 + (91F20 + 62F01 = 6,H3 + (Vx X E)3,
0=00F13 +01F30 + 03F01 = —0;Hy — (VX H)a,
0= 00F23 + (92F30 + 63F02 = 6,H1 + (Vx X E)l’
0=01F»+0,F3 +03F 1, =V, -H.

As a result, we have recovered the Maxwell equations.
Next, if u satisfies the Dirac equations, then we have
m2c?
72

Since partial derivatives commute, then

u= l%’ygaﬁu = _)'Baﬁ()’aaau) = —)’Q)'ﬂ(aaaﬁll)

m*c?

"2
so u also satisfies the Klein-Gordon equations.
Correction: For the converse, if ¢ satisfies the Klein-Gordon equations, then we show

1
W= 2O+ Y = 86,5 = o,

V=70~ im0

satisfies the Dirac equation. Note the extra factor —ic/i~! required on the right-hand side.
With ¢ as above, then a direct computation yields

m2c2 mc

w =

l’}/ﬁaﬁl// = —iD¢ + %’}’Baﬁ(b = %’}’Baﬁ(ﬁ -1

Thus, ¢ indeed satisfies the Dirac equation.
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2.5. Correction: Define the Galilean transformed function i by %!
E(t, x) = e v/hgimiP/2h i(t, x) = E(t, x)u(t, x — vi).
Direct computations yield

—im|v|?

2h

0,ii(t, x) = E(t, x)

J

u(t, x — vt) + Ou(t, x — vt) — Z vjaju(t, x— vt)} s

o
djii(t, x) = E(t,x) ’”;V

u(t,x —vt) + 0ju(t, x — vt)] ,

[ 22 2imvd
Aii(t, x) = E(t, %) m—zMu(t, x=vi)+ Au(t,x v + Y %a u(t, x — vt)} ,
J

n

Combining the above equations, we obtain
h A
i0, + —A|i(t, x) = E(t, x)|id; + — A u(t, x — vt).
2m 2m

Since |E| = 1 (in particular, E is always nonvanishing), it follows that & solves the linear
Schrodinger equations if and only if u does.

2.9. Suppose u : R x R? — C is a solution of (2.1), and define
u :RXRY S C,  uy(t,x) = u(A*t, 27 ),

where k is the degree of L and P. Expanding
PE) =Y pat”,  L=PV)= ) pad, pacC,

lal=k lal=k
then we can compute

Buua(t, x) = 0,[u(A™t, A7 )] = A7 0u(A7 1, A7 x) = AFLu(A e, A7 ).
We can similarly compute Lu, via the chain rule:

Luy(t, x) = Z Pad[u(A¥t, 7' x)] = Z A pad®u(7, 171 x) = AFLu(A ke, 7V x).
lal=k la|=k

The above shows that 0,1, and Lu, are the same, so that u, solves (2.1).
2.17. Applying the spatial Fourier transform of the transport equation
Owu(t, x) = —xg - Vu(t, x),
then we obtain
0,1, &) = —i(xo - O, §).
Solving this ODE with respect to ¢ yields
i(t,€) = e Mitg(€) = iy (€,
and taking an inverse Fourier transform yields
u(t, x) = up(x — txp).
As a result,

exp(=txo - V)f(x) = f(x —1x0),  exp(=xo - V)f(x) = f(x = X0).

2INote the difference in sign in the second exponent.
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If f is real analytic, then we can solve for a solution u to the transport equation that is
also real analytic in the time variable. We begin by assuming the ansatz

ut, x) = Z a(x) -5, u(0,x) = ag(x) = f(x).

k
The transport equation applied termwise to the summation yields

D+ Dagn () 1= " Vo) -
k k
In other words, for each k > 0, we must solve

ar1(x) = V_par(x).

1
k+1
Since ag = f, then by induction, we can show that 2

1 1
ar(x) = E(foo)kf(x) = H(V_I%)"f(x) ol k>0.

Plugging this in and recalling Taylor’s formula, since f is real analytic, we obtain
1
u(t, x) = ) (Vo) F0) - (xolt) = fx = xon).
ko '

2.18. The spatial Fourier transform of the wave equation is

d,iit, &) = —|elPat, &),

which, as an ODE in ¢, has general solution

(t,&) = a(¢) cos(rlg]) + b(&) sin(#[]).
Setting t = 0 yields i1p(¢) = a(&). Next, differentiating the above in time yields

9,(t, &) = —a(©)lg] sin(tlé]) + b()|g] cos(#l¢]).
Setting t = 0 yields &1 (£) = |£]b(€). Thus, the wave equation has a solution
sin(z¢])
-y (8).
ER
Since the operator —A in physical space corresponds to multiplying by the factor |£]* in

Fourier space, then V—A corresponds to multiplication by |£|. Thus, in terms of Fourier
multipliers, we can write the above solution in physical space as

in(t V-A
u(t) = cos(t Voh) - up + SREV=A)
V-A
For the spacetime Fourier transform, we take a Fourier transform in time of the above

representation formula for iz. Recalling the standard formulas for the Fourier transforms of
the functions ¢ — cos(at) and ¢ — sin(at), we have

~ ~ 4 N

u(t,&) = nlo(r — &) + 6(7 + [€D)] - o(é) + TSIWT =g = o(r +1ED] - @11 (£).
Somewhat informally, since 6(7 — |£]), d(T + |€]), and 6(|7| — |£]) correspond to integrals over
the upper null cone, the lower null cone, and the full null cone beginning at the origin,
respectively, then one can derive the identities

o(r = 16D + 6(r + 1)) = o(I7l = €D, 6(z = |§]) — 6(7 + &) = (7| — [€]) sgn 7.

i, &) = cos(tgl) - itp(§) +

22 the special case xo = 0, then solving the above equations for the a;’s yields that a; = 0 for all k£ > 0, so
that u(t,x) = f(x) forallt e Rand x € RY, as desired.
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For the second formula, one notes that the hyperplanes {r — |£] = 0} and {r + |£] = O}
correspond to the portions of {|7| — |£] = 0} with 7 > 0 and 7 < 0, respectively. As a result,
we obtain the desired formula

1
i(r, &) = 2m - (|7 = 1) | St (€) + %lg)m(f) .

Correction: The above spacetime Fourier identity for the wave equation differs from
the problem statement by a factor of 2.
For the H*-estimates, we use the Plancherel theorem and the above Fourier identity:

2 5L ena 12 2\ 51 A2
IVu@llg-r < I+ 1615 = Illaol™ ]2 + 1ICE+ 1617 = i Fll2 < Nuollary + llunllgzg-r-

Recall that cos(#|¢]) and sin(#|¢[) are uniformly bounded by 1. Repeating this process with
the Fourier identity for d,it (and replacing a and b as before), then we obtain the bound

18Dl < 1L+ 1672 0PIz + 1L+ 167 2 1 Pllzz < Motoll + le g
For the lower order bounds, again using the spatial Fourier representations, we obtain
le@ller; < Va1 + )y
S Netolls + Moarllgs-+ + 111 + |§|2)%ﬁ0||L§ + L+ 6P e sin(flDi 2

2 szl . N
S llutolly + llearllgzgr + QL+ 1€17) =161 sinzlgDi 2.

If we write the sine factor as

!
Isin(zlg])] < f Il sin(slgDld's < #lél,
0
then we obtain the following control:
2yt ~
Nl < Metollezy + Meerllpgyr + 2ICL + 1) =l
< Oluollas + i lzg)-
This proves the last identity in the problem statement.

2.21. Define the quantity
v(t) = e Ly(r),
and note that
Av(t) = =L " u(r) + e DL9,u(r) = e OLF (7).
Integrating the above and then applying the propagator exp[(t — fo)L] yields
eyt = u(ty) + ft "L E(s)ds, u(r) = ey, + ft e"ILF(s)ds.
to )

2.25. Let I = [a, b]. Taking the spatial Fourier transform of the wave equation for u yields

8ot &) = —Pa, &).

f u(z,xmzH - f ePac, £)dr
1 H? 1

By the above Fourier wave equation for & and the Plancherel theorem, then

f u(t, x)dt f it &)dt
1 1

By the Plancherel theorem,

2
LE

~
Gk

< 116:(b, Iz + ldrula, iz
L



24 ARICK SHAO

Applying the energy estimate for the wave equation (see Exercise (2.17)), we have
S 10Oz < Hu(O)llpz: + 110,240l 2.

f u(t, x)dt’
I H

2.29. 2 Let I = [a, b]. For the first estimate, we integrate by parts:

b
A 1 .
e Vdx = f - 3 [e?dx
fz a 1¢'(x)

_ 1 90) _ 1 €i¢(a)+fb(9x[ 1 }ei"b(x)dx
i’ (b) i¢’(a) a 1P

=Il+12+13.

By the assumption |¢’| > A, we see that 1/¢’ has constant sign throughout /, so that

1 1
I + | < i[qﬁ'(b) + M]

for the correctly chosen sign. Next, since ¢’ has constant sign, then

|I|<+fb6 [L]dx—+[L—L}
2T Tl T T e v

again for the correctly closen sign. Adding the estimate for |I; + I»| to that for |I3|, we see
that one pair of terms have to cancel, so that only one pair remains. As a result,

. 1 1 2
i) .
f1 e 6B |¢'<a>|] =2

For general £ > 1, we use an induction argument. First, the base case k = 1 is proved
by the above. Suppose now that the desired estimate

f P gy
1

holds for the case k, and consider the case k + 1. **

Let ¢ € CH1(I) satisty [0**1¢| > A, and fix § > 0. By this assumption on 6**1¢ = 9,6%¢,
then the uniform lower bound |8¥¢| > 61 must hold everywhere on I except possibly for a
subinterval I of length at most 26. Partition / \ Ij into subintervals

< 2max[

S ATE, geC, ¢z

I'={xel|x>yforallyel}, I"={xel|x<yforallye ).
Applying the induction hypothesis, we have %

f O dx f My
I I+

Next, for Iy, we have the trivial estimate

f ei¢(x)dx

Iy

f e Ddx
i

23The solution was obtained partially from [4].
24In the case k = 1, we must also assume that ¢ is convex or concave.
ZNote that if k = 1, then our assumption |91*1¢| > 1 automatically implies that ¢ is convex or concave.

+ < BAF + (BA)F < (BA)F.

< 26.

As a result, we have
< BT +6.
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Optimizing the inequality by choosing § ~ 2~1/®*D then we obtain as desired

f O dx
I

Finally, if ¢ is a function on / of bounded variation (so that it is differentiable a.e.), then

‘fei‘ﬁ("‘)t//(x)dx ‘f@x fx ei‘p(")dyw//(x)dx
1 1 a
b X
fémﬁww—fféMWWth
a I Ja

al%MM+£W@W}

L
Ske1 AR,

where in the last step, we applied the previous estimates for the integral of ™,

2.35. Suppose the given estimate holds for all u € S, (R?), with C, being the optimal
constant (i.e., the operator norm) for a given t. Given uy € S, and 1 > 0, we define

ué €S, ué(x) = up(A7 ' x).

By a change of variables, then we obtain the first inequality
. d
lle™ 2 uglls < Cetllugll = Crt A7 ol -

The rescaling property of Exercise (2.9) implies the identity

eitA/ZMé(x) — ei»/l"‘rA/Zuo(x//l),
so that by a similar change of variables, we have the second inequality

itA/2 40 A2 A2 42
lle"™ 2 ugllps = A lle™ " ugll s < Cragt® A4~ lugll 2.

By choosing u that almost fulfills the constant C, in the first inequality above, then dividing
the second inequality by the first yields

By reversing the roles of the above inequalities, we also have
A6 5 .

By varying A over all positive real numbers, it is clear then that

d d dfl1 1
- ——=-2a=0, a:—(———).
q p 2\q p
Next, combining the above and Exercise (2.34), we have for any ug € S (RY) that
; del_1 i 11
e ugllys < Ct* TP lluollps ™ uollyg = 772,

Choose 1 such that the constant C in the first inequality is almost realized. Dividing each
inequality by the other, as before, and varying ¢ over large positive real numbers, we obtain

1 1 df1 1
q 2) 2\q p
and by simple algebra this yields g = p’.

Finally, if ¢ < p, then
df1 1
{-2)e
2\q p



26 ARICK SHAO

so that for any uy,
L1

- . del
11A/2M()||Lz $u0 }1\1"%[2(11 11) = O

lim||e
~NO
However, this contradicts Exercise (2.34), which implies that

itA/)2

d(t-1 : d(z-3) _
e u >~ () TeT 2 Im (#)@¢7 2" = 1.
e 2ullzg 4, (0 lim (1)

As aresult, we have that g > p.

2.42. Suppose that the Strichartz inequality (2.24) holds for some p, g,d. If u solves the
linear Schrodinger equation, and if A > 0, then

uy(t, x) = u(/l’zt, 275
is also a solution of the linear Schrodinger equation, so that
leeallzory < Nlua(Ollzz, 4> 0.

By a simple change of variables, we see that

lallzor = A7l a2 = A (Ol 2.
This shows that
AT Nl < )z 2> 0,
independently of A. This can only hold if
d,2_d
roq 2

Next, let u be a Schwartz solution of the linear Schrodinger equation, and fix a sequence
h<h<n<...,

with the #,’s spaced “sufficiently far”” apart. Moreover, for any integer N > 0, we define
N

un(t) = Y ult = 1,),

n=1

which also solves the linear Schrodinger equation. We can estimate uy(0) in L? as follows:

N
lan O, = > lle ™ u()I2, + > (e u(0), e "u(0))
i=1 i#j
= NI, + > f U100, £)Pdé.
by IR

Via stationary phase methods, if the #,’s are spaced sufficiently far apart, then

N oo
v O, Supy N+ D> f SO 0. P <oy M.

=1 j=1 YR

As a result, we have obtained ||un(0)ll2 Suo) N 3

Next, we consider the LY L”-norm of uy. Let B, denote the interval (1, —¢, 1, +€) for some
small enough € so that each B, is very far away from all the other #;’s. By our assumptions
on g and r, then by Exercise (2.34),

_2
llur = t)llr =uar <€ = 1) 9.
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In particular, since the #,’s are spaced very far apart, then for any on 7 € B,, we have

e = )l > > Mt = t)llzs MawOller 2 IoaCe = )l

1<i<o0
i#n

Therefore, we can estimate from below as follows:

1
N q
leewllyo; > [Z f ||uN<r>||‘er)
n=1 v Bu
1
N q
z[z f ||u(r—rn)||q,‘dt)
n=1 v Bu ’
. 1
q
:(N f ||u<r>||L¢dr)

1
> Na.

In particular, if the Strichartz estimates hold for the above values of ¢, r, and d, then
q = 2, since otherwise, taking N 7 oo, we see that the lower bound for [|ux(0)|;2 grows

faster than the upper bound for ||uy|| -
2.46. First of all, the Littlewood-Paley and integral Minkowski inequalities imply that
1
2

iz =ra (Z |P~u(t>|2] < [Z ||PNu<t)||i;]
N 178 N

for any ¢. Therefore, applying Minkowski’s inequality again, we obtain

T
2
el 1 cmy S f (ZHPNu(r)uL;) dt
I\'N

< [; ( | ||PNu<z>||q,vdz)q

2
1

2
2
= [Z ||PNu||L;,L.;(,XRd)) :
N

For the “dual” estimate, we again apply the integral Minkowski inequality to obtain

1
2

, 1
a q
2
2 2
f(E 1Pyl ) di| < [§ |PNu|] :
1 * ,
N N LY L (IxR9)

1
2
Pyull?, <
(EN WPl W)] <

Another application of the Littlewood-Paley inequality yields the desired dual inequality.
Finally, for the Besov Strichartz inequality, we apply Theorem (2.3) to obtain

1

1

2 2
itA/2 2 _ itA/2 2 2
(;nfw uouw] —(;ne PNuouL;,L;) s(;nPNuon ] < Iluoll 2,



28 ARICK SHAO

since each Py commutes with id; + A, and hence its linear propagator. Similarly, we have

1 1
2\2 2
fe‘”A/zF(s)ds < (Z ] Sdg [Z ”PNF(S)”iq’L;/) >
- ~ Li ~ t x

where in the last step, we applied (2.25). Finally, for the Besov inhomogeneous Strichartz
estimate, we apply (2.26) in order to obtain for any band N that

f INZ P F(s)ds
s<t

f e SA2PyF(s)ds
R

L

Sd,q,r,q’i' ”PNF(S)”L?/LE"

LIL;
Taking an £2-summation of the above over N yields the Besov analogue of (2.26).

2.47. First, we compute the symplectic gradient V,,H. Since for any “nice” u,v € L>(R?),

=f Re(vu-ﬁ)z—f Re(Au - 7),
&=0 Rd Rd

W(VoH@W),v) = -2 f Im(V,H(u) - ) = 2 f Re(iV, H(u) - ),
R4 R4

d 1
—H(U + &V)|pe0 = = \Vu + eVv)?

de 2 % R4

then varying v appropriately, we obtain
2V ,H(u) = iAu.

Thus, Hamilton flow associated to H is the linear Schrodinger equation,
i0u = iV,H(u) = —%Au.
Since {H, H} = 0 trivially, then H is conserved on the Hamilton flow of H, i.e.,
H(u(t)) = Hu(0)), iOu = —%Au.

This is the conservation of energy. The corresponding symmetry from Noether’s theorem is
given by by flow along the Hamiltonian equation for H. Since integrating along this flow
produces time translates of solutions to the H-Hamiltonian (i.e., Schrodinger) equation,
then the corresponding symmetries for H are time translations.

Next, consider the total mass/probability

M(u) = f >,  we L*RY).
Rt’
Since for any “nice” u,v € L*(R?), we have

iM(u + &V)|g=0 = 2f Re(u - v), WV ,M(u),v) = 2f Re(iV,M(u) - v),
de R R4

then we have V,M(«) = —iu. The associated M-Hamiltonian equation is
ou(t) = —iu(r),
which has solution flows '
u(t) = e "u(0).
Note that H is clearly conserved along this flow. By Noether’s theorem, we have

M@u(t) = M(u(©0)),  idu = —%Au,

which is the conservation of mass/probability. Furthermore, the corresponding symmetry
for H is given by the solutions of the M-flows, i.e., the phase rotations.
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For the momentum functionals
pia = [ tm@u- .
]Rd

we can similarly compute
d
—pijUu+ev)le= = f Im@-0ju+i-0v) = 2[ Im@9ju - v),
de" R4 ’ ’ R ’

w(Vopju),v) = =2 fR mVop () - v).

Thus, V,p;(u) = —d;u, so the associated Hamiltonian equation is the transport equation
O = —0;u,
which has solution flows
u(t, x) = u(0, x — te;),

where ¢; is the unit vector pointing in the positive x/-direction. As H is clearly conserved
by these flows, each p; is conserved by solutions of the Schrodinger equation. The corre-
sponding symmetry for H is given by solutions of the p;-flows, which are translations in
the x;-direction. By taking each 1 < j < d, we obtain symmetry for all spatial translations.

Finally, for the normalized center-of-mass, which are time-dependent Hamiltonians, we
must first extend our “phase space” as in Exercise 1.42. Let D denote our informal “phase
space” for the linear Schrodinger equations, on which w is defined. We define D = R?x D,
and we define the following symplectic form on D:

o((a,b,u), (@b ,u')) =ab’ —ba + wu,u’).
Again, as in Exercise 1.42, we extend H to a Hamiltonian on D:
HeC'(D—-R), H(ab,u)=Hu)+b.
A direct computation yields that
VoH = (1,0,V,H).

As a result, a curve ¢ — u(f) solves the linear Schrodinger equations, with initial value
u(0) = up € D, if and only if for any b € R, the curve ¢t — u,(t) = (¢, b, u(t)) solves the
H-Hamilton equations, with initial value u;(0) = (0, b, ug).

We now define the normalized center-of-mass Hamiltonians on this extended phase
space D. Given 1 < j < d, we define the functions

N;eC'(D—-R), Nabu)= f xjlul*dx — ap (u).
R4

To compute the symplectic gradient of N;, we first compute

d
—Nj(a+ed,b+eb,u+ev)= = 2Ref xjuvdx —a’'p;(u) — 2af Im(d;u - v)
d€ R R4

=2Im Ny ixjuvdx —a'pj(u) - 2a fRd Im(d;u - v).
Considering the definition of @, then we see that

VaNj(a,b,u) = (0, pj(u), —ixju + ad;u).
Hence, the Hamilton equations associated with N; are

9s(a(s), b(s), u(s)) = (0, p(u(s)), —ix;u(s) + a(s)du(s)).
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Now, suppose (a(s), b(s), u(s)) is a solution of the above equation. Then, for any s € R,
d - d
d—H(a(S), b(s),u(s)) = —H(u(s)) + p;(u(s))
s ds
= f Re iVu(s) - Vu(s) + p;(u(s))
Rd ds
= f Re{V[~ix;u(s) + a(s)0ju(s)|Vu(s)} + p(u(s))
R4

-1

- f Im u(s)du(s) + 5a(s) f OIVu(s)F + pj(u(s))
Rd R4

= —pj(u(s)) + p;(u(s))

=0.

Thus, A is conserved by the Hamilton flows of N ;» and therefore by Noether’s theorem,
N is conserved by the solutions of the linear Schrodinger equation. Finally, solving the
Nj-Hamilton equation explicitly for a(s) and u(s), we see that

1. 2 P
a(s) =ty € R, u(s) = e 2% ey (x + fyse;),

where ¢; € R? is the unit vector in the positive x -direction. Since a(s) = to corresponds to
the time variable, then the above curve s — u(s) generates the Galilean symmetry indicated
in Exercise 2.5, in the special case v = —se;. 26 Combining all the above componentwise
Galilean symmetries for 1 < j < d yields the general Galilean symmetry.

2.48. Letting eg = [Vul?/2, then
N _ P
deo = Rezj:a,a,u G =Re ZjlajAu B = Zj"aj [Re Shu- a,u] ~Res Zjl Aul.

The second term on the right-hand side of course vanishes, while the first can be written as
the divergence of the vector field Re(%AuVu). This is the desired local conservation law.

2.49. First, from the conservation of the pseudo-conformal energy, we have
Gk + iVl 2 < G+ VU 20y = 52Ol 2
As a result, by the conservation of mass, we have
V)l 28, < 107 Tl 25 + 1Ol 2]
< 17 [RII(®)ll 38, + Ixue(O)]l.2]
< R U0 2.

2.50. ¥ Let ¢ : RY — R be a bump function such that
1 |x<1,
P = {o I > 2.

Define

M(t)=( f ¢2(x/R)|u(t,x)|2dx)2, reR.
]Rd

26Note the correction at the beginning of Exercise 2.5.
27 Thanks to Kyle Thompson for a technical observation.
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Differentiating the above and recalling the Schrédinger equations, we obtain

Re | ¢*(x/R) - iAu(t, x) - u(t, x)dx

R4

s M@ j}; | IVl /R)Jlip(x/Ryu(t, )l Vu(t, x)ldx,

M(t) < M(t)™!

where we have integrated by parts in the last step, noting that when the derivative hits #,
then the integrand is purely imaginary. Applying Holder’s inequality yields

aM(1) £ M@ IV (/R s MOE? < RTE?.
Integrating the above results in the inequality
M(t) < M(0) + O4(R™"E*1]).
Finally, by the definition of ¢ and M, we have for any ¢ # O that

( f lu(t, x)lzdx)z < M(9)
|x|<R

< M(0) + O4(R™E=|t)

1
2
s( f |u(0,x)|2dx) + O4(RVE2 1),
|X|<2R

2.52. First, we expand the H**-norm using the Plancherel theorem:

k
" .
2™ fllysaay = D IXY €™ fll s oo

j=0
k

= ) IE VY (™ Pz
j=0

Loae2 A
< D @V @™ Pl
a+b<k
Note that whenever a derivative hits the exponential factor, one picks up an extra factor of
& and ¢. Thus, applying the Leibniz rule and induction to the above yields

ko J
Lin LifgP b A k k—jvl A
le*™ fllysay § > W@ ™V fil gy < 08 DT ST IOV Al 2.

a+btesk Jj=0 1=0
Applying the Plancherel theorem, we have, by definition,
k

LA j
e Fll sy 0% IOV Al sy < OV s o
Jj=0

2.53. First, note we can assume & > 0 is small, without loss of generality. We wish to
adapt the Morawetz-type argument using the smoothed function a(x) = (x) — &(x)' .
From (2.37) and the definition of T, we have

) f & a(x) - Tm[u(t, x)0u(t, x)] - dx = f &% a(x) - Re(d;u(t, x)dul(t, x)) - dx
R3 R3

1
- - f lu(t, x)*A%a(x) - dx
4 R3

=L +1.
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We now compute and estimate the derivatives of a.

dja(x) = xj ()~ + (1 - )x0)™"%,

dija(x) = ()71 = e(1 = )0 ] (5,, - %) + 731 - e(1 — )y e )L

|x[?
2 -1-¢
+&°(1 —e)x)” 750

= Ay (65— ) 4 Ay T L 201 - ey
B NPT B T g
In particular, this implies the following estimates:

0ja(x)l <e 1, 10;ja(x)] Se ()7 + )7 + (x5 (7
Furthermore, we can compute

Ala(x) = —X(1 + &)(1 — )2 — e)(x) 3¢
—(O1-3-2-1-D-e(1+&)B+)[2+e)l —g)— 1|(x)")

—)T1-1-3-5—e(1 —&)(1 +&)B+ )5+ e)x)?]
= -1 +&)(l—&)2-e)}x)>%—B) —Bs.

From our computations for 0%a, we can now evaluate I;. Note first that since ¢ is
sufficiently small, then the factors A; and A, are both everywhere nonnegative. As a result,

I = f Ay - [Vu(t, )P - dx + f Az - 10,u(t, x)I* - dx + C; f X8 Vu(t, x)|Pdx
R3 R3 R3
> C, f (xX)78|Vu(t, x)[dx,
R3

where C, > 0 is a constant depending on €. Similarly, since By, B, > 0 everywhere,

D, 1 D, 3
L==" f ) ux, Pdx + 5 f (B + By)lu(x, Dl Pdx > =F f 07 lulx, P dx.
4 Jps 4 Jrs 4 Jrs

Integrating our initial Morawetz-type identity over the time interval [-7, T] yields

f & a(x) - Tm(u(t, X)0u(t, x)) - dx
R3

=T

T
>C, f f XY 18| Vu(t, x)|Pdxdt
t==T -T JR3

Dé‘ 4 -3-¢ 2
+ — (x) lu(x, t)|“dxdt,
4 -T R3

where we have applied the above observations and inequalities. Due to our estimates for a

along with mass conservation, we can apply the “momentum estimate” of Lemma A.10 to
bound the left-hand side by some constant times ||(0)]I2

7o+ Finally, letting 7' 7 co yields
f ()" Vu(t, x)dxdt + f () Flu(x, 1)Pdxdt < |lu(0)]*
R JR3 R JR? H

2.58. We first compute the symplectic gradient V,H. Formally, we have

ol—

l1d
—H((up, u1) + (o, vi)le=0 = z— f (IVuo + eVvol* + luy + &vi*)le=o
de 2de Jpa

= (Vug - Vvg + uy - vy)

R4
= f (I/l] V1 —AMQ . Vo).
Rd
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In addition, letting (wg, w;) = V,H(ug, u1), we have

w((Wo,wl),(vO,vl))=f(w()w—wlv()),
R4

so that by varying vy and v;, we have V,H(ug, u;) = (u;, Aug). Consequently, the Hamilton
flow associated with H is 9;(ug, u;) = (u, Aug), or equivalently, the second-order system

8;2140 = 01 = Auy, M0|t:t0 = ¢, azMO|t:t0 = “1|t:r0 =y
2.59. Recalling the identity (2.46) for the stress-energy tensor, we have
o | ™™=-1] 67°+Re | 0°u-F=-Re | du-F,
R? R? R? R?

on any timeslice ¢t = 7. Integrating the above with respect to the time over the interval [0, 7]
and recalling the exact form of 7% yields

13
wmm@+mmm;sz@+mm;+jlﬁwwmmw.
: : : L

Taking a supremum over all # > 0 and applying Holder’s inequality, we have

2
IVl cor + 1022 < IVuolI7, +I|u1I| 2 10l 211 F 22

crL: ™
Applying a weighted Cauchy inequality to the last term on the right-hand side completes
the proof of the energy estimate (2.28) in the case s = 1.

For general s € R, note that the operator (V)*~! commutes with all derivatives, and
hence (V)*~1u also satisfies the wave equation

(VY u = (V)y*IF.
Finally, applying the above estimate (the s = 1 case), we obtain

IVl 2o poer + |I(9tuIICoHS VS VY uliZo o + 10l

COHY™ 12 012
S IV Fll
< ”F“L,‘H;*‘ -

2.60. Elaboration: We assume our variation is compact, that is, X has compact support.
Using the given notations, we have

d
0= —3S(us g
s (ug, 85)

s=0

d
= L(ug, gs)dgs
Rl+d

ds s=0

oL B
LHJ ou a8 Y) uV a8 5=0 ’ azﬁ flﬂ ﬁg”ﬁ(u"gv) - dg;

+ f L(us, gs) |det gl
Rlﬂl

= fml E(M g) Usls=0 dg+2fw agaﬁ gv |S 0 dg

ﬂfLm9—|wm
RI+d ds
=A+B+C.

s=0

s=0
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The term A corresponds to the Euler-Lagrange equation for the fixed-metric Lagrangian
T(u) = S(u,g). Since u is a critical point of 7' by assumption, A vanishes. To evaluate B
and C, we must evaluate derivatives of components of the metric. First,

d af _ au PBv d _ au By
el I g @ =
Similarly, since | det g;| = — det g, (due to the Lorentzian signature), we can compute
d 1 i d 1 |
— +/ldetgyl| = -(—detg)™ 2 —(—detg, = —(—detg)? - g""m,,.
7 | eglszo 2( etg) ds( eg)s=0 2( etg)? - g m,
Combining the above observations, we obtain
0=B+C
oL 1
— _oau BV o)+ = MY , .
fR[ 88 a1 8) + 58 L g)] T
= _f g””gVﬁTaﬁﬂwdg
RI+d

T jl;lm Tﬂvﬂlﬂ’dg'

This completes the first part of the problem.
Since T is symmetric in @ and 3, then

T%Prys = TP(VoXg + VpX,) = 2TPV, Xg.

As aresult, by the (spacetime) divergence theorem,

o:f T“ﬂvaxﬁ=—f Vo T - Xg.
RI1+d RI+d

Since this holds for arbitrary X (say, of compact support), then V, 7% = 0, ie., T is
divergence-free. Finally, in the special case L(u, g) = g"ﬁaauaﬁu, we have

L 1 1
Top (u,8) — =8apL(u, g) = 0qudpu — Egaﬁg”vﬁﬂuavu.

- 0gP 2
2.64. Let X denote the radial field

We can compute the deformation tensor 7 with respect to X, here with respect to Cartesian
coordinates. First, since X is time-independent and has no time component, then

mog = gy = 0, 0<pB<3.
Next, if i and j are spatial indices, i.e., 1 <1i, j < 3, then
_ X 4 9,%, = 2. X0 =
Mij = ORj O = L T s
Since T is divergence-free, then

1 ..
0o (T Xp) = 5T

= (0'ud’u — Eé’faauﬁ"u)(lxl_léij - |x|_3x,~xj)

VP 3 L, 1
- 2 ud™ = — @) + ——Bud”
ERE T e TR
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2
1
= Vv — —0,u0%u
|x] BY
IV el 1
= — —o(u*).
|x] 2|x]

Next, fix a cutoff function 7 on R supported on [-1, 1], fix Ty > 0, and define the
rescaling i1, () = n(t/To). On one hand, by the spacetime divergence theorem,

f f nTo(t) : aa(TaﬁXﬁ) - dxdt = ff ag[?]TO(t) . T“ﬁXIgI(,,x)]dxdt
R JR3 R JR3

- f f dmr, () - T%Xg - dxdt
R JR3

=0-1.

Note in particular that due to the cutoff function 57, and the rapid decay of u in the spatial
directions, the divergence theorem yields no boundary terms. Moreover, since X has unit
length everywhere, and since |T%| < |D,”u|2 then

111 < 16,77l f f Dy dxdi <) — f f D uldxdi S E,
R?

1 1
E = Sl + 10Oz

where

and where we have applied the standard energy conservation for the wave equation.
On the other hand, we also have that from our expansion for d,(7%) that

1
f f 11, (0 (TP Xg)| 1.0 dxdt = f f — 01, OVl + 02 (|ul®) = A(ul*))dxdt
R JR3 R Jr3 |¥]
= 12 + 13 + 14.

The term I, we can simply leave alone. For I4, recalling that the distribution —(4zx])~" is
the fundamental solution of A (with respect to the origin of R?), then we can compute *®

I = 4r f 71 (Olu(0, D).
R

Lastly, for I3, we integrate by parts once and apply Holder’s inequality:

0 1 X,
131 < 1377, I f O g |atu<t>||Lz( o )' )dt.

(ST

|xI* o Ty
Applying Hardy’s inequahty (Lemma A.2) to the spatlal integral, we have
1 (T
1 % - f 0,2 IV a0l 2l 5 E.
0 J-T1y

where we have again applied the conservation of energy.
Combining all the above yields our desired inequality

2
[ [ B s [ oo, of =1+ 1< £
R3 R

Moreover, note that the above inequality holds independently of Ty. Thus, letting Ty /' oo
and applying the dominated convergence theorem yields the desired Morawetz estimate.

Z0of course, one can compute 4 explicitly, by replacing the spatial integral over R® by the same integral over
R3 minus a ball of radius £ about the origin and then letting £ \ 0.
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2.69. First, we can directly compute
0, T? = FéPu + 6% - 8,0°u — %aﬁ(a(,u - 0%) = FdPu.
Consider the vector field *
X =e"0;,  Xi=0ye™.
By the divergence theorem,

0= f 0o (T Xp) = f FoPu-Xg+ f T%%0,Xp = —I) + L.
Rtl Rtl R4

For I, we can expand

I = —f EMFOu = —f e"1Fdj(e"u) +tf Fue®™.
R4 R4 R4

Next, since 8,Xg = 84;05,2t€*, then

L =2t f THie*™
R4

=2t | |0ufe - tf S udue™™
R4

R4

= 2tf €10 ud;(e™u) - 2t2f Oju-u- e+ tf uFe*™ + 2t2f w-oju- e
R4 R4 R4 R4

= ZIf |8,~(e”‘fu)|2 —2t2f eiu -9 (e iu) +tf uFe*™i,
Rd R R

Since the second term on the right vanishes (by the fundamental theorem of calculus), and
since I; = I, by our previous calculations, then

th Io",-(e”‘fu)l2 =— f eYIFd (e u).
RIS R?
Finally, applying Holder’s inequality to the above yields the Carleman inequality
1
10;(ewll2 < mlle’x’Flle-

Suppose now that Au = O(Ju|). Since u is compactly supported, then
1 J 2
=lle™ull?, = f f dj(e"u) - e™iu - dsdx < |le"ul|2 [ f f |0 ,(e”u)|2dxds] )
2 Re J—co R JR?
If R is chosen so that u is supported entirely in the region {|x;| < R}, then
X 1x; R 1x;
lle™ullr2 < 2R|I0 (e wll2 < mlle ‘ullz,

where we applied the Carleman inequality in the last step. Taking ¢ to be sufficiently large
forces |le™ul|;> = 0, which implies u = 0 and proves the unique continuation property.

29Here, t is simply a nonzero constant.
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2.70. Correction: The correct identity we wish to show is
U |ys. = ||V S
lulles, = Wl
Let ¥, and F; denote Fourier transforms in space and time, respectively. Since
u(n) = Uow(n) = ™), Fau(t) = " OF (),
then we have

lllys, = K€Y (T = (&))" - File™ OF w02z
= KT = h€)’ - FF2v(x = hE), Oz
= (@) FF (T Oz

= ||V||Hf>H;,

where we applied the Plancherel theorem in the last step.

2.75. 3% We first prove the analogous estimate for solutions of the linear Schrodinger
equation. More specifically, we show that if ug, vy € S(RY), and if iy and Py are supported
in the Fourier domains |¢£] < M and |¢] > N, respectively, then

d-1
. . 2
lle™ uoe™ vollp212 Sa

—lluoll 2 lIvoll -
2
Again, if d = 1, we also require that N > 2M.
First, suppose d > 2 and N 5; M. Then, applying the Gagliardo-Nirenberg inequality
(Proposition A.3) and the Strichartz inequality, we obtain, as desired,
A ith irA irA
le"upe™ vollizzz a lle uollzzzzslle™vol , a4
FERN A
<a IVIF eugll |l vl
L

2d
4y d-T
/LY LyL;

1
d-2
Sa IVEZ uoll2lvoll 2
42
< M 2 luoll2Ivoll 2

M5
Sa —Iluollz2lvollz-
N2 ’

Next, we consider any arbitrary dimension d, but with N >>; M (in the case d = 1, we
need only assume that N > 2M). By duality, it suffices to prove

d-1
2

Sa = ol vollz NP

2

I=

f f ™ up(x)e™vo(x)F (1, x)dxdt

R JR4

By Parseval’s identity, and recalling that
Frxle™ug)(r,€) = 8(r = 1EP)ig(&),  Frxle™vo)(T, &) = 6(t — [E17)Do(&),

in the distributional sense, we can expand [ as follows:

I ~

f (€ upe™ o)1, &) F (. £)dédT
R JR4

~

ff f 8(t1 — 16D (ENS(12 — eal)Do(é2)dé dT F(t, E)dédr
R JR J(11.61)+(12,62)=(1,6)

30Much of the solution was obtained from [2].
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~

fR ) fR BENEIF (I + 161, & + £)dé1dé

Applying Holder’s inequality and recalling the supports of iy and 7y, then

2 3
I < luoll2 {f [f Do) F (&1 + 16, & +§2)d§2} d§1}
lE1lsM LJRY

suuouLgnvOHLg[ f f |F(|fl|2+|fz|2,-fl+§2>|2d§2d§1} :
[E11<M J)éE =N

Given 1 < i < d, we define the domain
D; ={(&1,6&) e RYXRY 1] < M, 6] > N, €] > Nd ™7},

where fi is the i-th component of £;. Note that

D; = {(£1,6) e RY xR | 1¢] > M, &) > N).

d
i=1

Consider the change of variables

s=& +&, r= &P+ &P & =€,

on D;, where & € R4! represents & € R but with the i-th component §’i omitted. An
explicit calculation yields the following value for the corresponding Jacobian:

a(r. &, )
A&, &,6)
Here, the sign in “+” depends on the dimension d. By our assumption N >4 M (or N > 2M

when d = 1) and from our definition of D;, we have that J > N on D,. Integrating now
over D; and applying this change of variables, we have

=2 £ &),

f IF(& 1 + 167, & + &)PdéEdé < f d¢, f f \E(r, )P sy dsdr
D; 1€ 1<M R JR

<Sa MT'NTIF

L2
As a result, combining all the above, we obtain
1
l Boe (2 2 2 ’ M7
15 ol lvollzz | ) f F(& P + 6P, & + E)Pdérdsr | <a —Iluoll2lvoll 21 Fllz 2.
i=1 YD 2

This completes the proof of the case N >, M. As a result, we have proved

d-1
itA M=

itA
lle" uoe™ voll 22 Sa lleoll 2 Mvoll 2,

1
2

with 1y and vy as before. It remains to convert the above into an X**-type estimate.
Let u,v € S, (R x R?) satisfy the hypotheses in the problem statement. Given any
o, T € R, we define the following functions on R:

fol) = @m)™* fR JHER + o e g, () = 27 fR TP + 7. Oe de.
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Note in particular that f:, and 2, are supported in the Fourier domains |£| < M and |£] > N,
respectively, for any o and 7. From the proof of Lemma 2.9, we have the identities

1 N 1 I
ult) = — fe”"e’mf(,do: V() = — fe’”e’mg,d‘r.
2 R 2w R

Using the above identities, we obtain

f f eito'eitAf(reitTeitAgTdO_dT
R JR
< f f lle™ fre™ gelly2 2dordT

R JR

d-1
M7
<4 — f £l 2dor f llgell2dr,
N2 Jr R

where in the last step, we applied the free Schrodinger estimate established above. Finally,
applying Holder’s inequality as in the proof of Lemma 2.9, we have

llevllz2pz <

L21%

d-1
2

1 1
3 M
2b 2 2b 2
[ [ ||fo-||L§dcr} [ [ ||gT||L%dr} < Sl Il

CHAPTER 3: SEMILINAR DISPERSIVE EQUATIONS

d—1
M7
1
2

Nvllz2rz <an N

3.1. First, for the NLS, consider the symplectic form w and the Hamiltonian H, given by

1 2
w(u,v) = -2 f Im@?),  H(u) = f ~[Vul* + e
R Rd 2 p+1

where u and v are in the appropriate spaces. Taking a (directional) derivative of H yields

de de +1

d d 1 2
—H@u + &V)|gg = — f [—IV(u +ev) + ulu + 8v|”+1]
R4 2 P

&=0
= f [Re(Vu - V) + 2ulul’~! Re(uv)]
R4
=1Im f (—iAu + 2iplulP~ u)v
R4
L. R
=w EIAM —iulul’ u, v|.
As a result, the symplectic gradient of H is
1
V., Hu) = EiAu — iululP " u,
and hence the Hamiltonian evolution equation is
1 . . -1 . 1 -1
o = EIAM — iplulP™ u, i0u + EAM = ulul’ u.
Similarly, for the NLW, we define w and H, also on appropriate spaces, by

w((ug, uy), Vo, v1)) = f (uov1 — vouy),
Rd

1 1
Heu.u) = [ (—|VM0|2+—|M1|2+ muOV’“).
i \2 2

p+1
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Again, taking a directional derivative yields

d _
d—gH(uo +&vo, Uy + &V)le=0 = f’[Vuo - Vvo + wyvy + pluol” (uovo)]
RL

= fd[ulvl — (Aug — pluol” ug)vo]
R

= w((u1, Aug — pluol”~ " uo), (vo, v1))
Thus, the symplectic gradient of H and the associated Hamiltonian evolution equation are
VoH (o, 1) = (1, Aug = pluol” o), o = ur, dur = Aug — pluol”™" .
Combining the above, we obtain the nonlinear wave equation
Oug = —8,2140 + Aug = =0y + Aug = pluol” uo.

3.2. Let u and v be defined as in the problem statement. For convenience, we also define

T — Xg+1 .
= (t7x) = (t’xl""»xd+|)5 Z/ = (T+’xl9"‘7xd)’ E=e l(t+Xt[+l)'

We can then compute
1
0v(z) = —iEu(?) + §E6,u(z’),
1
v(z) = —Eu(?’) — iEQu(Z) + ZEétzu(z’),

1
Oy V(@) = —iEu(Z') - §E8zu(z’),

1
05, W(2) = —Eu(Z) + iEdu(Z) + ZE&,ZM(Z’).
Furthermore, we define the symbols

d d+1
2 2
Ay = § 0y, Ager = § 0y,
=1 =1

Combining all the above, we compute
—02(2) + Ags1v(2) = —07v(2) + EAqu(Z’) + & v(z) = 2iEQ,u(’) + EAqu(Z)).

Xd+1

Since u satisfies the NLS, then
~82V(2) + Ags1v(2) = 2uEIE)P u(Z) = 2ulEu )P Eu(Z') = 2uv@)P ().

Correction: If u satisfies NLS, then v satisfies NLW, with an extra factor of 2 multiplied
to the power nonlinearity. This comes from the factor of 1/2 on the Laplacian in the NLS.

3.5. 31 Correction: The solutions u,; in (3.21) of the nonperiodic focusing NLS, being
Galilean transforms of rescaled soliton solutions, should be

_2 e (X —VE
Uy ) = 1 rTee i -HAZQ( - )

Throughout, we will always fix the constant 7 to be 1. 32
Correction: The statement we will actually show is the following. Suppose s < 0 or
s < s, and let 0 < 6 < £ < 1. Then there exist solutions # and ' to (3.1) such that:

e At time 0, both u and &’ have H*-norm comparable to &.

31part of the solution was inspired by [1].
32Since the soliton Q itself depends on 7, we fix 7 a priori.
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e Attime 0, the H’-separation between «’ and u is comparable to §.
e At some later time ¢ < &P, for some positive power p depending on s, the H*-
separation between u’ and u is comparable to .

This shows that the solution map for (3.1) is not uniformly continuous in the H*-norm. In
particular, the requirement 6 < € is mandatory, since by the triangle inequality, if solutions
u and u’ have H*-norm comparable to € at time 0, then

Nl (0) = u(O)ll g3y < et Oz ey + 11" Oy ey S &

We begin by noting, for arbitrary v € R? and A > 0, the identity
2 N I
ﬁv,/l(f) = A1 g_l%ﬂ?z f ix- (v_g)Q( Vt) dx
R i

<[\r2 . .
— /ld_ p%l e—z%ﬂﬁ f ez(}x+vt)~(v—§) Q ()C) dx

R4
_/ld,i zt(——vf+/l )Q(/Lf—/lv),

where i, ), denotes the spatial Fourier transform of u, .
First, we consider the case

Se = = — >0, 0<s<s,.

2 p-1

For conciseness, we write u, in the place of ug ,, for any 4 > 0. Note that
2 _ 2d--% 251 A 2
a1, oy = 47 fR P10 e

= a2 a0
— 2sc—s) 2

= 2NN,
In addition, fix A’ > 0, and define y = A"/A.

Next, we compute the H*-separation at time ¢:

_2 i _ 2 i A 2
et (1) = ur @Il oy = f P ()T ew? QU €) — AT T e Q(/lgf)] dé
(/l/)Z(Yc—v)”Q”H ) + /IZ(Y,—X)HQ”H ‘&)
(T 0 Re g ) f 6P O H0E)de
R"

— /12(3‘0—5) [l + ,)/2(3“.—5)] ”Q”2

B (R")

— 2y 42 Re o R f 6P O(yé) O(€)dé

= ) {[1 + VIO ) — 275 Re(e"" 7 - 17)} :
where I, is the integral
Iy = f e 000 0(6)de.
R
If t = 0, then by the dominated convergence theorem,

lim Ly = Q0o il (©) = Oy = 0.
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Thus, by choosing y to be sufficiently close to 1, we have

e (0) = ua(O)lpzs ey < € - A NQllpgyrey = clluea(O)llgzy = clluey (Ol

for some small constant ¢ <« 1 depending on vy, but independent of A.
Furthermore, since y is near 1, then 7, is almost real-valued, so by taking some

s /12 : b/_z_ 1|_17

i.e., 1 to be A2 times a large but fixed constant, the quantity """~V [, becomes purely
imaginary, and it follows for this choice of ¢ that

2 2,(_‘ 2.(_‘ 2 ~ 21_‘ 2
i @) = uaDliy oy = A0 [14 72NNy = A NI o
Now, since s > 0, we have that
2 2 2
Wty = I ey + 1z

As a result, we can apply the above computations both for s and for s = 0. Thus, given &
and ¢ as in the problem statement, we can choose A such that

et (O ey = 1A (O)l| s mey = &,
et (0) = ua(O)l|psray = 6 < &,
ey (1) — ur(Dllgs ey = €.

This completes the proof in the case s, > 0and 0 < s < 5.
It remains to consider the case s < 0. For this, we define the shorthand u, for u,; for
any v € R?. We begin by computing the H*-norm at ¢t = 0:

Nt ()13 gty = fR (+1EP)10 - v)Pdé = (e vl O@)Pdé.

In addition, fix v/ = (1 +B)v € R3, for sufficiently small 8 > 0. Moreover, we let
&€= ||Mv(0)||H;(Rd) = ||M‘»'(0)||H;(Rd)-
To obtain a possible range of values of &, we take |[v| > 1, and we write

Nt ()13 gty = L (s V)10 dé + L (I V' IQ@)PdE = 1y + 1.

Note first that
I = f 10@)Pdg = .
R4

Next, since Q is rapidly decreasing, so is Q hence for any a > 0,
hs f LI+ ) (1 6P dE < 7
>

As long as the power @ > 0 is chosen to be large enough, we obtain

2 23
ity O,y =

Since s < 0, it follows that
lim ”uV(O)”Hj,(R") - 0.
y—00

Thus, by continuity, we can choose & to be any non-large constant, as desired.
For the time separation, we compute

2, (4 2
eit(%—" '§+1)Q(§ V) - en(%_v'ﬁl)QA(é‘ —V)| dé

ety (1) = sty (D75 50y = fR 1Py
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= fR [+ IEPYI0E = VIde + fR L+ EPYI06 - v)dg

-2 fR (1 +1ePy Re {e"’[ww'*ﬂ 0 -0 - v)} dt
= fR (U IE+VPYI0@dE + fR (g P10 de

-2 fR A+ Re {e"’[W‘ﬁ”"“")] 0¢ - ﬁV)é(f)} dt
= fR JHIE+VPYI0@dE + fR (+1E+vP)I0@)PdE

2112
ol
it=

—2Ree Rd(l + |.f + V|2)seilﬁV'EQA(§ _Bv)Qx(é:)df

= fR (e VIRIO@)Pde + fR (A+le+ VIO PdE - 24,5,

where
B2

Jia=Ree S [ (1l vPye 0t - prdierde.
R4
By the dominated convergence theorem, we have
lim Jos = 1+ 1€ + v 10©))Pde, 1im [y (0) — 14,(0)|| gy = O.
Jim Jo.s Rd( &+ v 1@ dé ﬁ\oll (0) — s (Ol a3 ety
Thus, by choosing g to be sufficiently small, we obtain for some small ¢ < 1 that
ety (0) = (D)3 ) < fR A+ IE+ VD10 dE = Ol o) = 26

Next, take t = 872|v|™!, i.e., t a large constant times |v|~! =~ &~!/%. Choosing a component
1 < m < d of v such that |v,,| = |v|, then we can bound

i~y
1,5l < Fne® M dg

[Lasiersproe-pmie-

1
B ol
<B fR 101+ 1€+ PO - B0,

where we integrated by parts in the last step. Recalling that Q is rapidly decreasing, we
can, using the same techniques as before, derive the bound

.5l < BV = Be.

As a result, with 8 sufficiently small, and with this choice of ¢ ~ g7!/¢

, we have

2 2
lly (0) = el gy gay = €7 Mot () = (Dl ey = &

Recall that, with 6 = ce, we also had

||uv'(0)||H;(Rd) = ||Mv(0)||H;(Rd) =é,
ety (0) = tp(O)| srey = 0 < &.

This completes the proof for the case s < 0.
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3.6. In general, (3.2) has the conjugation invariance property: if u is a classical solution of
(3.2), then its conjugate i also solves (3.2). To see this, we simply compute:

0it + Ait — p|al’ ' = ou + Au — plulP~'u = 0.

Correction: We will prove the following: if u is a classical solution of (3.2), and if both
u(to) and 0,u(ty) are real-valued, then u is everywhere real-valued. Note that the additional
condition on d,u(fy) is necessary, since if u(fg) and 0,u(ty) are purely real and imaginary,
respectively, then u cannot be everywhere real at a time near 7.

If u is as above, then # is also a classical solution of (3.2), and at 1y, it satisfies

(t) = u(ty),  ilty) = dyulty) = dyulty),

since both u(#y) and 0,u(ty) are real-valued. Thus, by uniqueness (Proposition 3.3), it fol-
lows that u and # are everywhere equal, and hence u is everywhere real-valued.

3.7. Let R € SO(d,R) denote an arbitrary spatial rotation. Suppose u and v are classical
solutions to (3.1) and (3.2), respectively. By spatial rotation symmetry, the functions

ug,vg : I X RY > C, ug(t, x) = u(t, Rx), vr(t, x) = v(t, Rx)

are also classical solutions to (3.1) and (3.2), respectively.

Now, suppose u(fy) is spherically symmetric. Then, ug solves (3.1), and ug(t9) = u(t).
By uniqueness (see Proposition 3.2), it follows that uz = u everywhere. Since this is true
for any rotation R, then u is spherically symmetric.

Likewise, if v[fy] = (v(ty), 0,v(ty)) is spherically symmetric, then v solves (3.2), and
vrlto] = v[to]. By uniqueness (Proposition 3.3), vg = v everywhere. By varying over all
rotations R, it follows that v is spherically symmetric.

3.9. Correction: In this problem, we are considering the focusing NLW.
Fix t9 > 0, and consider the solution to the focusing NLW in (3.6):

2p+ 1)
(p- 17
This is a smooth solution that blows up at time #y. Let ¢ : R? — [0, 1] be a smooth and com-
pactly supported cutoff function that is identically 1 on the ball about the origin of radius
R, with R > 1y. Consider the compactly supported initial data (ug, u;) = (ou(0), ¢d,u(0)),
which we impose at time ¢ = 0. Solving the focusing NLW with this data yields a classical
solution v. 3* By uniqueness and finite speed of propagation (Proposition 3.3), it follows
that # and v must coincide on a cylinder C = {(t,x) | 0 < t < 19, |x| < r}, for some r > 0.
Since u blows up at t = #y on C, then v blows up at ¢ = 75 on C as well.

1
P

=3
u(t,x) = cplto—0rr,  ¢p=

3.10. Since u is a strong H*-solution to (3.1), with data u(fy) = up, we have, by definition,

tloc™ " x

!
ueC® H(IxRY, u(t) = e%i(”’omuo - iuf e%i(”r)A[Iu(‘r)lp’lu(T)]dT

fo

for any # € I. We can restate the above in terms of #; rather than #: 34

!
1 L L.
M(t) — eil(l*l‘])Aeil(tlfto)AuO _ lﬂf eil(t—T)A[lu(T)V)*lu(T)]dT

3]

33Here, we must apply existence theorems for classical solutions of the NLW.
34Note that in the last term below, we implicitly used that the strong solution u is continuous in time in order
to factor the linear propagator ¢/~"D/2 out of the time integral.
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11
— e3itmmA {iy f e%f<’l-T>A[|u(T)|P—1u(r)]dr}.

fo

Since u; = u(t;), and since u is a strong H*-solution to (3.1) with data 1, then

1]
s iy
up = wrO0Ay gy f e O Ju()P u(n)1dx.

fo
Consequently, we obtain, as desired

t
1 1.
u(t) = 2"y — iy f e TN Ju(r)P u(r)ldr,

n
and it follows that u is a strong H*-solution to (3.1), with data u(t,) = u;.
Next, since conjugation preserves the H*-norm, the function

t e 0(t) = u(-1), —tel

is also a continuous map into H*. Moreover, by definition, for any such ¢, we have

- t
i(t) = ex =08y (1) + iuf e IC=DA ()P~ u(T)]dx.

Iy

Since the linear Schrodinger equation is conjugation-invariant, then

t —_—_—
a(r) = e (i) + i f e O ()P Tu(r)ldr

fo

!
= e2 A [~ 19)] — i f e M a(—r)P a(-)ld

—fo
!
= 2"y — iy f e O |a(r)P (r)]dx.
%

The above equation shows that i is a strong H*-solution to (3.1), with data #i(—ty) = .
Finally, let v be a strong H*-solution to (3.2) on an interval /, with initial datum

vlto] = (v(t0), ;v(t9)) = (vo, V), el
As before, fix another time #; € I, and let
v[ti] = (1), 9,v(t1)) = (vi, ).
For simplicity, we write
sin(s V=A)
vz ¢
L), 8) = (L[ 8), 5[ L(s)(f, &)D-

representing the linear propagator for the wave equation, written as a first-order system.
Applying the semigroup property for L, the proof proceeds like in the case of the NLS:

L(s)(f, g) = cos(s V=A)f +

(0), ,v(1)) = L(t = 10)(vo, v) — K f Lt =)0, (@)~ v()dr
= L(t = 1)Lty = 19)(vo, vp)] —,tlf Lt =)0, (@) v(m)dr
Lt —h){iﬂ f | Lty =)0, ()P _1V(T))dT}

=Lt = 1m)(vi,v)) - ﬂf Lt =)0, @)~ v(@)]dr.
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Thus, v is a strong H*-solution to (3.2), with data v[#;] = (v1, V).
3.12. Suppose u is a weak H*-solution to (3.1) with data u(#y) = ug, where s > d/2, i.e.,
!
ue L°H (I x RY), u(t) = e%i(’_’O)Auo - iuf e%i(’_T)A[Iu(T)II’_lu(T)]dT,

fo
with the integral equation holding almost everywhere. Fixing two nearby times #,¢ € [ for
which the above integral equation holds, then we can bound

1. 1
lut) — u@®llgs < |lfe2™ A — 208y e

+

[ ettt - [ eH O o uar

fo fo

H:

|y 1
< ||[e2" TR — IRy e +

f e N (P u(r)lde

Hy
)
(008 = 1) [ (e

fo

+

H;y
=L+ N; +N,.

By the dominated convergence theorem, the linear part L satisfies

ei(l’—fo)léfl2 _ el'(t—fo)l~’fl2

2= [ asry *lin@)Pde — 0

as ¢’ — t, hence it is continuous in time. For the nonlinear part Nj, we use Lemma A.8, in
particular (A.18), along with the fact that the u(7)’s are uniformly bounded in H*:

)
M [ Il < @ = Ol
, ,

In particular, the right-hand side goes to 0 as ¢ — ¢. Similarly, for the remaining term N,
letting ¥ denote the Fourier transform in the spatial variables, then

sz[ [Laveer
Rd
sf U<1+|§|2)S
T R4
s(r’—ro)i[f [Lavierr
o R4

By Lemma A.8, there is some constant C > 0, independent of 7, such that

1

i

) 2
PP _ 1‘

f F XN (o) uo) N

DR _ 1|2 ‘gz-‘{e%i(f-ﬂA[|u(‘r)|p_1u(‘z')]}'2 df}z dt

1

S0P _ 1'2 |¢{e%i(t—T)A[|u(T)|f"1u(T)]}|2 dg—“d‘r] .

fR A+ P F A P uNde < il < C.

Thus, by the dominated convergence theorem, it follows that N, — O as ' — t.
Consequently, # can be considered (by replacing a subset of measure zero) as a contin-
uous function into H*(R?), hence u is a strong H*-solution.



SOLUTIONS 47

3.13. Let J be any time interval containing t, and let u, v be two strong solutions to (3.1)
on J with the same initial data at 7. Define the subset

A={ted|ul)=v@)

Since both u and v are continuous with respect to z, then A is closed. Furthermore, if s € A,
then by the local uniqueness assumption, there is an open interval I containing s such that
u(t) = v(t) for any r € 1. As aresult, I C A, and it follows that A is open. Since A is
open, closed, and nonempty (since #yp € A by assumption), it follows from connectedness
considerations that A = J. Thus, u and v coincide everywhere on J.

3.14. First, note that for any x € R?, we have, by definition and induction, the inequality
V0] S ),

for any nonnegative integers 0 < j < k, where V denotes the spatial gradient on R?. As a
result, we can apply the above in conjunction with the Leibniz rule in order to obtain

k
i b b
Wl = D K Fllyiin < S IV G Pllizny § D IV fllzze-
Jj=0 a+b<k a+b<k

Similarly, again by the above pointwise inequality and the Leibniz rule, we have

DI fllzgs £ D IV Dllzay S Mg gy

a+b<k a+b<k

Using the above equivalent formulation of the H*f-norm and Holder’s inequality yields

||fg||H£vk(l§¢/) < Z II(x)”V[’fV“g||L3(R,1)

a+b+c+p=k
< E ICOVEFI 2 VAl 2
atb (md TP md
a+b+c+p=k L™ ®D LT (R

Given a, b, ¢, p as in the terms on the right-hand side above, since k > d/2, we have

d a b d c p
1—=_2 —a-— Z
( k k)<k a=b, 2(

2
Thus, the Gagliardo-Nirenberg inequality (Proposition A.3) yields

el < D IOV Fllyear g IV Fll s

a+b+c+p=k

Finally, returning to our pointwise inequality, we have, as desired,

1@l S ) YV Fllizay Y I Pl < 1 s 8l gy

a+b<k c+p<k

APPENDIX A: TooLs FRoM HARMONIC ANALYSIS

A.15. Correction: For the first inequality, we need an extra condition, e.g., # having zero
mean. Otherwise, we can consider a constant function u = ¢ # 0, for which we have

1/2 1/2
iy = ¢ £0, Ny’ I9adl}f2, = 0.
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With the extra mean-free assumption for u, we can conclude via the intermediate value
theorem that u(zy) = 0 for some #y € I. 35 By the fundamental theorem of calculus,

t !
2 2
() = f dlul® < f lldul < Nl 2Bz, t €L
fo fo

This proves the Gagliardo-Nirenberg inequality.
Next, suppose I = [a, b], and let u denote the mean of u on /. As a first step, we assume
that u = 0. Integrating by parts, then we obtain

b b 1
f |uf? f [u(t)-@, f u]dt
‘ b ‘ b '
f u—f [6,u(t)~fu]dt
b a at a
—f [&u(r)‘fu}dt.

Applying Holder’s inequality yields

b t\2
sy, < 190l [ | ( [ u) dt}
a a

b 2
2
< 10ull 2 ( f |1|||u||Lz(,))
a

< NGl 2y llell 20y
which implies the Poincaré inequality in the case u = 0.
Finally, for general u, since u — u has zero mean, then

u(b)

I—

llu = ullr2cry < MO = W2y = NGl 2
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